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Abstract

This paper presents two related research projects that explore different aspects of

hyperbolicity in both group-theoretic and geometric contexts.

In part 1, we construct a random model for an n-fold branched cover of a finite

2-complex X. With mild hypotheses on X, we show that as n goes to infinity, a

random branched cover is asymptotically almost surely homotopy equivalent to a 2-

complex satisfying geometric small cancellation. As a consequence, the fundamental

group is asymptotically almost surely Gromov hyperbolic and has small cohomological

dimension.

In part 2, we consider geometric and topological properties of cusped spaces and

branched coverings of finite-volume manifolds modeled on Hm × Hn. Let M be a

finite-volume manifold whose universal cover M̃ is isometric to Hm × Hn, and let S

be a compact, totally geodesic, codimension-two submanifold of M whose lift to M̃

is isometric to Hm−1 × Hn−1. We consider manifolds N = M \ S and Xd, an n-fold

branched covering over S. For a product lattice Γ = Γm × Γn that gives rise to M ,

we prove that N admits a complete, finite-volume, A-regular metric with nonpositive

sectional curvature and Xd also admits a nonpositively curved Riemannian metric.

More generally, for any lattice Γ ≤ Isom(Hm×Hn) and ϵ > 0, we show that N and Xd

admit complete Riemannian metrics of almost nonpositive sectional curvature, with

volume bounds independent of ϵ.
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Chapter 1: Hyperbolicity of Random Branched Coverings

1.1 Introduction

The probabilistic method was originally pioneered by Erdös, and was used as a

non-constructive approach to showing the existence of interesting examples in com-

binatorics and graph theory, see e.g. the classic text by Alon—Spencer [1]. The

method has been particularly effective in graph theory, with random graphs having

evolved into its own field of study. Random models have since been developed to

study higher dimensional simplicial complexes (Kahle [28]), random closed surfaces

(Brooks—Makover [8]), and random 3-manifolds (Dunfield—Thurston [11]). In the

late 1980s, Gromov launched the study of random groups. The two main models for

random groups are the density model and the few relator model, see Gromov [18] and

the survey article by Ollivier [37].

A common theme in these approaches is that a space is built by attaching spaces

together via a random process. In the case of random graphs or simplicial complexes,

edges or simplices are added to a vertex set at random. In the setting of random

surfaces or 3-manifolds, triangles or handlebodies are glued together via a suitable

random process. In the setting of random groups, one can think of relations as 2-cells
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being randomly attached to a bouquet of circles, with the random group being the

fundamental group of the resulting 2-complex.

A different topological construction that is commonly used in low-dimensional

topology is that of branched covers. All closed oriented surfaces can be realized as

branched covers over the sphere, a fact that is also true for 3-manifolds (Hilden [27]

and Montesinos [35]). Branched covers have also been a source of many interesting

examples in the geometry of negatively curved manifolds, see e.g. Gromov—Thurston

[21], Fine—Premoselli [14], Stover—Toledo [41], Minemyer [33], Guenancia-Hamenstädt

[24]. From this viewpoint, it is natural to look for a random model for branched cov-

ers. In the present paper, we construct a random model for branched covers of finite

polygonal 2-complexes and prove:

Main Theorem. Let X be an acceptable finite polygonal 2-complex, and fix λ > 0

an arbitrarily constant. Let X(σ) be an n-fold random branched cover of X. Then

X(σ) is asymptotically almost surely homotopy equivalent to a 2-complex satisfying

geometric C ′(λ)-small cancellation.

By a polygonal 2-complex, we mean a 2-dimensional CW-complex where the at-

taching maps are particularly simple, as described here. The 1-skeleton is metrized

by having each edge of length one and having a prescribed orientation. The 2-cells are

identified with disks scaled so that their perimeter is an integer. We then subdivide

the boundary of the 2-cell into consecutive intervals of length one, and the attaching

map is required to map each of these intervals isometrically onto a single edge of

the 1-skeleton. For these CW-complexes, the attaching maps for each disk can be

described just be enumerating the sequence of edges traversed in the 1-skeleton. Note
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that we are allowing the possibility of a disk attaching to a single edge loop, or to a

pair of edges (so paths of combinatorial length one or two).

By an acceptable polygonal 2-complex, we mean one which satisfies the following

additional conditions:

1. the 1-skeleton X(1) has fundamental group of rank at least two;

2. the 2-cells have attaching maps that are not proper powers in π1(X
(1)) (so in

particular, are non-trivial), and that are pairwise distinct.

It is easy to see that the Main Theorem fails for non-acceptable 2-complexes, so our

hypotheses are actually necessary.

It is well-known that the C ′(1/6)-small cancellation property has strong geoemet-

ric consequences [23]. As a result, the λ = 1/6 case of our main theorem immediately

implies the following:

Corollary 1.1.1. Let X be an acceptable finite 2-complex, and let X(σ) be a n-fold

random branched cover of X. Then we have asymptotically almost surely the following

properties hold:

• π1(X(σ)) is Gromov hyperbolic and cubulable;

• X(σ) is aspherical, hence an Eilenberg–MacLane space K(π1(X(σ)), 1);

• The cohomological dimension of π1(X(σ)) is at most 2.

1.2 Preliminaries

1.2.1 Branched Coverings

Let us recall the notion of branched covering of smooth manifolds (see e.g. [16]).

3



Definition 1.2.1. (n-fold branched covering of manifolds) Given a pair of

smooth k-manifolds Xk, Y k, an n-fold branched (or ramified) covering is a smooth,

proper map f : Xk → Y k exhibiting some particularly simple local form. The critical

set Bk−2 ⊂ Y is called the branch locus, and we require that it is a smoothly em-

bedded codimension two submanifold. Moreover, f |X\f−1(B) : X \ f−1(B) → Y \ B

is a covering map of degree n, and for each p ∈ f−1(B) there are local coordinate

charts U, V → C × Rk−2 about p, f(p) on which f is given by (z, x) 7→ (zm, x) for

some positive integer m called the branching index of f at p.

Notice that, when restricted to the branching locus B, the map f |f−1(B) is just

an ordinary covering map. The pre-image of B is not assumed to be connected,

and indeed, could have multiple connected components. Transverse to the branching

locus B, f behaves like the map z → zm near the origin – though again, at different

pre-image points the value of m might be different.

This definition can be readily extended to the setting of CW-complexes. As we

will only need the 2-dimensional case, we will focus on that case.

Definition 1.2.2. (n-fold branched covering of 2-complexes) Given a pair of

finite 2-dimensional CW-complexes X, Y , an n-fold branched (or ramified) covering

is a continuous map f : X → Y satisfying the following property. There is a finite

subset of points B ⊂ Y , called the branching locus, which satisfies B ∩ Y (1) = ∅ (so

B lies in the interior of the 2-cells). Moreover, f |X\f−1(B) : X \ f−1(B) → Y \ B is a

covering map of degree n, and for each p ∈ f−1(B) there are local coordinate charts

U, V → C about p, f(p) on which f is given by z 7→ zm for some positive integer m,

called the branching index of f at p.
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Note that, in the case where a 2-cell in Y contains more than one branch point,

connected components of its preimage might no longer be homeomorphic to a disk.

However, if there is a single branch point inside a 2-cell, then each component in its

preimage will be homeomorphic to a disk.

1.2.2 Small Cancellation Conditions

Small cancellation has been a useful tool in combinatorial group theory since the

1970s, see e.g. the references [30], [22], [23], and [25]. There are various notions

of small cancellation. Here, we start by recalling the metric small cancellation (or

classical small cancellation) with respect to a group presentation. Roughly speaking,

this condition says that any common subword between two relators in a presentation

is short compared to the length of the relators.

Let X be a symmetric generating set for a group Γ, i.e. X contains all elements

of a generating set S and their inverses. We call an element of S a letter. A word w

is finite string of letters w = s1 . . . sm. We consider w as an element of the free group

F with the generating set S. Then each element of F other than the identity 1 has

a unique representation as a reduced word w = s1 . . . sn in which no two successive

letters sisj form an inverse pair sis
−1
i . The integer n is the length of w, which we

denote by |w|. A reduced word is called cyclically reduced if sn is not the inverse of

s1. If there is no cancellation in the product z = u1 . . . un, we write z ≡ u1 . . . un.

A subset R of F is called symmetrized if all elements of R are cyclically reduced

and for each r in R, all cyclically reduced cyclic permutations of both r and r−1 also

belong to R. Suppose that r1 ≡ bc1 and r2 ≡ bc2 are distinct elements of R. If b is
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the maximal such subword then it is called a piece relative to the set R or simply a

piece.

Definition 1.2.3. We say that R satisfies the small cancellation condition C ′(λ) if

for r ∈ R with r ≡ bc where b is a piece, then |b| < λ|r|. In this case, we also say

that the presentation satisfies C ′(λ). Also, for a group Γ, if there is a presentation

that satisfies C ′(λ), we say that Γ is C ′(λ) group.

The following is well known:

Proposition 1.2.4. [22] If a finitely presented group Γ satisfies C ′(1
6
), then Γ is word

hyperbolic.

Geometric consequences of the small cancellation hypothesis are further studied in

[30], typically via the group’s presentation 2-complex, as well as van Kampen diagrams

and their mapping to 2-complexes. This allows the small cancellation condition to

be reformulated geometrically, and the results to be generalized to the setting of

polygonal 2-complexes.

Recall that the attaching maps for the 2-cells in a polygonal 2-complexes are given

by a (cyclic) sequence of directed edges from the 1-skeleton. For each 2-cell D in a

polygonal 2-complex, the boundary ∂D is a cycle graph, and one can label the edges

of ∂D according to the directed edges they map to in the 1-skeleton.

We will consider combinatorial subpaths b in ∂D which are injective on their

interior (so at most, agree at the two endpoints). A subpiece is a subpath in the

boundary of a pair of disks ∂D, ∂D′, whose labels, including orientation, are identical.

Note that D′ can possibly be the same disk D, but with distinct initial vertices for

the two subpaths of the boundary. In that case a subpiece would be contained in the
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self-intersection of the attaching map on ∂D. A piece is a subpiece in the boundary

of a pair of disks ∂D, ∂D′ which is maximal under containment.

Remark 1.2.5. Maximality gives us some insight on the local behavior of the labels

on D, D′ near the endpoints. If the endpoints of the piece are distinct vertices in ∂D,

∂D′, then maximality tells us that at the initial (and terminal) vertex of the path b,

the previous (resp. following) edges of ∂D and ∂D′ have to be distinct.

The other possibility is that the endpoints of the piece b coincide in D (for ex-

ample). Note that this means the label on D′ contains an entire copy of the label on

D.

We say that D satisfies C ′(λ) if for any piece b of D, we have

ℓ(b)

ℓ(∂D)
< λ

where ℓ is the combinatorial path length. We say that a 2-complex satisfies C ′(λ) if

each of its 2-cells satisfy C ′(λ). This provides us with a geometric notion of small can-

cellation, and results on groups satisfying small cancellation (established via analysis

of the presentation 2-complex) readily generalize to 2-complexes satisfying geometric

small cancellation.

In our later constructions, we will consider certain finite covers of the 1-skeleton

of X, with certain lifts of attaching maps. Given a 2-cell D with attaching map

α : ∂D → X(1), we have an associated map α̃ : R → X(1) obtained by composing

the universal covering map π : ∂̃D → ∂D with the attaching map. We can identify

∂̃D with R equipped with its standard simplicial structure. The map α̃ is then

described by the bi-infinite, periodic word obtained by lifting the edge labels from

∂D to ∂̃D ∼= R. Since we will be interested in studying small cancellation properties

7



associated to some of these covers, we now formulate a notion that is slightly more

general than a piece.

A sub-overlap between two disks D, D′ is a pair of finite combinatorial subpaths

p ⊂ ∂̃D and p′ ⊂ ∂̃D′ on which the lifted attaching maps α̃ : ∂̃D → X(1) and

β̃ : ∂̃D′ → X(1) coincide. Note that the paths p and p′ are not required to respect

the orientation on the real line. Sub-overlaps are considered equivalent if they differ

by translation by the π1(∂D) and π1(∂D
′) actions and reversing the orientation on

both p and p′. We also allow the case where D = D′, in which case we also require

either the orientation on p ⊂ ∂̃D and p′ ⊂ ∂̃D′ to be different; or the starting points

of the overlaps to be in distinct orbits of the π1(∂D)-action (i.e. correspond to distinct

initial points in ∂D).

Definition 1.2.6. An overlap is a sub-overlap which is maximal under containment

The overlap ratio of D with D′ is defined to be

o(D,D′) = sup
p

ℓ(p)

ℓ(∂D)

where the supremum is over all overlaps (p,p′) between D and D′. The overlap ratio

of a 2-cell D is then defined to be o(D) := supD′ o(D,D′), and the overlap ratio of

the polygonal 2-complex X is defined by o(X) = supD o(D) = supD,D′ o(D,D′).

Observe that a piece whose length is strictly smaller than the length of both

∂D and ∂D′ is automatically an overlap. In particular, for ϵ < 1 the C ′(ϵ) small

cancellation condition is implied by the statement that o(X) < ϵ. On the other hand,

when the overlap ratio of a pair satisfies o(D,D′) ≥ 1, this just means that the label

for ∂D is entirely contained in the label for ∂D′.
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Lemma 1.2.7. Let X be an acceptable polygonal 2-complex, (p,p′) an overlap between

disks D,D′, and set M = max{ℓ(∂D), ℓ(∂D′)}. Then the length of the overlap is

bounded above by ℓ(p) < M2 +M . In particular, for any pair D,D′ of 2-cells, the

overlap ratio o(D,D′) is finite. It follows that for any finite acceptable polygonal

2-complex, the overlap ratio o(X) is finite.

Proof. Let us consider the case where D ̸= D′, and assume that the overlap (p,p′)

has length

ℓ(p) ≥M2 +M.

Since the lifted attaching maps ᾱ, β̄ coincide on p,p′, these paths have identical edge

labelings. Moreover, these labeled paths can be viewed as subpaths of the labeled bi-

infinite paths ∂̃D, ∂̃D′. These bi-infinite labeled paths are periodic with respect to the

π1(∂D)-action and π1(∂D
′)-action, which are translations by ℓ(D), ℓ(D′) respectively.

Since the common subpath contains fundamental domain for both translations, one

can apply the Euclidean algorithm to find a subpath of length r = GCD(ℓ(D), ℓ(D′))

that tiles both fundamental domains. To see this, consider the initial subpath q ⊂ p

of length r. Since r = GCD(ℓ(D), ℓ(D′)), the Euclidean algorithm provides us with

an integral solution to Bézout’s identity

r = Aℓ(D) +Bℓ(D′)

and the solution satisfies |A| ≤ ℓ(D′), |B| ≤ ℓ(D). Note that exactly one of the

integers A,B is positive, the other is negative. Assume without loss of generality

that A is positive. Viewing q ⊂ p′ as the initial segment of p′, and using π1(D
′)-

periodicity of ∂̃D′, we can translate A times along ∂̃D′. Since the length of p′ is

> M2 +M , the translate of q is still contained within p′. We now switch to viewing
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that translate as contained in p, and use π1(D)-periodicity of ∂̃D to translate B

times along ∂̃D. This has the effect of translating q by exactly r, and hence the

initial portion of p of length 2r consists of two copies of q. We can iterate this

process M/r-times, noting that the hypothesis that ℓ(p) > M2 +M guarantees that

the forward and backward translates from Bézout’s identity land within the common

subword p,p′. If r < M , this tells us that the larger of the two words is a proper

power, contradicting the definition of acceptable 2-complex. On the other hand, if

r = M we get that ℓ(D) = ℓ(D′), and the two disks D,D′ are attached along the

same map, which again contradicts the definition of acceptable 2-complex.

Next we consider the case where D = D′, i.e. self-overlaps. Then one has that

the bi-infinite label on ∂̃D is periodic with respect a translation by ℓ(D). Since the

subwords p,p′ differ by a translation by some 0 < k < ℓ(D), the subword p is also k-

periodic. Then as before we can apply the Euclidean algorithm to obtain a solution to

Bézout’s identity, and use combinations of ℓ(D)-translations and k-translations to see

that the p is actually periodic with period r = GCD(k, ℓ(D)) < ℓ(D). This implies

the attaching map for D is a proper power, which again contradicts X acceptable.

Finally, since X has only finitely many pairs of 2-cells, the supremum of the

overlap ratios will still be finite.

Corollary 1.2.8. Any acceptable polygonal 2-complex X only contains finitely many

equivalence classes of overlaps (p,p′).

Proof. For a given pair of 2-cells D, D′, we can count the overlap pairs (p,p′). Up

to the action of π1(∂D), the initial point of the path p can be chosen in a fixed

fundamental domain F ⊂ ∂̃D, where F is a combinatorial interval of length ℓ(∂D).

Thus there are at most ℓ(∂D) possible initial vertices for p. From the Lemma, there
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is also a uniform bound of max{ℓ(∂D), ℓ(∂D′)} on the length of p. Thus there are

at most finitely many possibilities for the path p. A symmetric argument shows that

there are at most finitely many choices for p′, hence finitely many possibilities for the

pairs (p,p′). Since the acceptable 2-complex X has a finite number of 2-cells, the

corollary follows.

1.3 Random Branched Coverings

In this section, we describe our random model for branched coverings of finite 2-

complexes, with the motivating example being the case of the presentation 2-complex

of a finitely presented group. We then establish a few basic properties concerning the

behavior of 2-cells in our random model.

1.3.1 Branched Coverings of presentation 2-complexes

Let us first focus on the setting of a presentation 2-complex. Let Γ = ⟨u1, . . . , ut |

r1, . . . , rs⟩ be a finite presentation of a group Γ, and let X be the presentation 2-

complex for the fixed group presentation above. The complex consists of a single

vertex v along with oriented loops x1, . . . , xt corresponding to each generator, and

2-disks D1, . . . , Ds that are attached by the attaching maps r1, . . . , rs corresponding

to the relators. For such complexes, being an acceptable 2-complex just means that

the finitely presented group has at least two generators, that no relation is a proper

power.

Remark 1.3.1. Conversely, any finite polygonal 2-complex that has a single vertex can

be viewed as a presentation 2-complex for its fundamental group. These spaces have

the advantage of having a canonical basepoint for the fundamental group. To deal
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with the general case of a finite connected polygonal 2-complex X, we can contract

a spanning tree T for the 1-skeleton to obtain a 1-vertex 2-complex X ′, and use the

branched cover model for covers of X ′. The details can be found in Section...

Next let us describe an n-fold branched covering of X, with branching locus B

consisting of the set of centers of the 2-disks D1, . . . , Ds. Consider a not necessarily

connected n-fold covering of the 1-skeleton X(1). Since the presentation 2-complex X

has a single vertex, an n-fold covering of X(1) has n vertices, which we will label v1

to vn. Under the covering map, the pre-image of each directed loop xi will consist of

n directed edges which we denote xi1, . . . , xin. Our labeling convention is to label the

lifted edge xij to originate at the lifted vertex vj. Then each vertex vj has some lifted

edge xik coming in, and the lifted edge xij going out. Note the situation where j = k

corresponds to the case where the lifted edge starting at vj is a loop at the vertex.

Figure 1.1: Branched cover of a presentation 2-complex

Given such a covering of X(1), we then attach a disk to each of the lifts of the

attaching map r1, . . . , rs. Note that each disk Di in X has its boundary labeled

12



ri, and for each vertex in the cover we have a path starting at that vertex and

following the letters of ri. If this path in the cover ends at a vertex different from

the starting vertex, we follow the letters of ri again, repeating the process until the

word ends at the starting vertex. In this process, we get a closed path and we attach

a disk boundary along this path. We call the disks Dij, for suitable indexing set

for j, and refer to Dij as a lift of the disk Di. Note that some lifts have the same

attaching map up to cyclic permutation. We consider these as the same disk and do

not include repetitions. The number of lifts that are considered as a single disk is

denoted by ind(Dij) and called the index of the disk Dij. Attaching all lifts of disks

D1, . . . , Ds ⊂ X, we obtain a branched covering of X where the branching locus is

the set of the centers ci ⊂ Di of all of the disks in the original 2-complex. See the

figure above for an illustration of this process.

Remark 1.3.2. The branching index of each center cij ⊂ Dij is the same as the index

of the disk Dij. The combinatorial lengths of the attaching maps are related via the

simple formula

ℓ(∂Dij) = ind(Dij)ℓ(∂Di) = ind(Dij)|ri|

where ℓ is the combinatorial length.

1.3.2 Random model for branched coverings

We now proceed to define our random model for branched coverings of a presen-

tation 2-complex, which allows us to randomly pick a degree n branched cover of the

2-complex X. We call this the random labeled branched cover model. Note that, as

detailed in the previous section, each degree n branched cover of the 2-complex X

determines, and is determined by, an ordinary degree n cover of the 1-skeleton X(1).

13



Since in our special case X(1) is a bouquet of t circles, it is easy to describe the degree

n covers of this graph.

Labeling the n pre-images of the single vertex v by labels V = {v1, . . . , vn}, cover-

ing space theory tells us that associated to each loop xi inX, we have a permutation σi

of the vertex set V . The collection of permutations is determined by the finite cover,

and conversely, determines the cover up to label preserving isomorphism. Thus there

is a bijection between the set of degree n branched covers, and elements in the product

of t copies of the symmetric group Sym(n).

A random n-fold covering of X(1) can now be generated by choosing t random

permutations σ = (σ1, . . . , σt) with uniform distribution, where each σi ∈ Sym(n)

corresponds to each generator ui, i = 1, . . . , t. For a generator ui and its corresponding

loop xi in X
(1), a permutation σi represents the preimage of xi in the n-fold covering

space. More precisely, if the permutation σi maps the integer a to the integer b, then

there exists an oriented pre-image of the edge xi that joins the vertex va to the vertex

vb. For a finite presentation of a group Γ, the random choice of σ = (σ1, . . . , σt) where

σi ∈ Sym(n) completely determines a n-fold covering of X(1), and thus determines the

n-fold branched covering after lifting the attaching maps. We denote the branched

covering by X(σ).

Example 1.3.3. Let Γ = ⟨a, b | a−1b2ab−1⟩ and X be its presentation 2-complex.

Let n = 3 and σa = (123), σb = (12)(3) ∈ Sym(3). From the choice of σ = (σa, σb),

we have a 3-fold covering of X(1). A disk D ⊂ X is attached to X(1) along the

relation a−1b2ab−1, so our label on ∂(D) is a−1b2ab−1. The attaching map of D has

two connected lifts D1 and D2, which are attached via the maps

∂D1 = a−1
3 b23a3b

−1
2 a−1

1 b1b2a1b
−1
1 ,

14



Figure 1.2: A branched covering of degree 3 (Example 1.3.3)

∂D2 = a−1
2 b2b1a2b

−1
3 .

Then the obtained 2-complex X(σ) would be a 3-fold branched covering of X with

branching locus {c1} ∪ {c2} where c1 (resp. c2) is the center of the disk D1 (resp.

D2). The branching index at c1 is 2 and at c2 is 1. An illustration of the cover X(σ)

is given in Figure 1.2.

Consider the fundamental group π1(X(σ)) in this case. Choose a1, a2 as a spanning

tree of the 1-skeleton. Then the generators of π1(X(σ)) will be a3, b1, b2 and b3. We

have two relators a−1
3 b23a3b

−1
2 b1b2b

−1 and b2b1b
−1
3 , obtained by collapsing the spanning

tree a1 ∪ a2. We can remove the generator b3 and the relator b2b1b
−1
3 by a Tietze

transformation as b3 = b2b1. Therefore, the fundamental group of the branched cover

X(σ) is the one relator group with presentation

π1(X(σ)) ∼= ⟨a3, b1, b2 | a−1
3 b2b1b2b1a3b

−1
2 b1b2b

−1
1 ⟩. (1.3.1)

Example 1.3.4. Let Γ = ⟨a, b | aba−1b−1⟩ and X be its presentation 2-complex.

Let n = 3 and as before, let σa = (123), σb = (12) ∈ Sym(3). From the choice of
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Figure 1.3: A branched covering of degree 3 (Example 1.3.4)

σ = (σa, σb), we have a 3-fold covering of X(1). A disk D ⊂ X is attached to X(1)

along the relation aba−1b−1 so we the label on ∂(D) is aba−1b−1. In this case the

attaching map of D has a unique connected lift D′, with label

∂D′ = a1b2a
−1
3 b−1

3 a3b1a
−1
1 b−1

2 a2b3a
−1
2 b−1

1 .

See Figure 1.3. Thus the branched cover 2-complex X(σ) will be a 3-fold branched

covering of X with a unique branch point {c′} where c′ is the center of the disk D′.

The branching index at c′ is 3.

Note that the original group Γ = ⟨a, b | aba−1b−1⟩ is a surface group of genus 1, and

X is homeomorphic to a torus. Recall that a branched cover of an oriented surface

is again an oriented surface, and we can determine which surface by considering the

Euler characteristic of the branched covering. Looking again at Figure 1.3, we see

that X(σ) has a CW-structure with three vertices, six edges, and a single 2-cell, thus

giving us χ(X(σ)) = −2. Since χ(X(σ)) = 2− 2g where g is the genus, we conclude

that X(σ) will be a surface of genus 2.
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This can also be seen directly from the fundamental group π1(X(σ)). Choose

a3, b1 as a spanning tree of the 1-skeleton, then the generators of π1(X(σ)) will be

a1, a2, b2 and b3. After collapsing the spanning tree a3 ∪ b1, the attaching map gives

rise to the single relation a1b2b
−1
3 a−1

1 b−1
2 a2b3a

−1
2 . This gives us the presentation

π1(X(σ)) ∼= ⟨a1, a2, b2, b3 | a1b2b−1
3 a−1

1 b−1
2 a2b3a

−1
2 ⟩ (1.3.2)

Let α1 = a1, β1 = b2, α2 = a−1
2 b2a1, and β2 = b3. By applying Tietze transformations,

we obtain the presentation

π1(X(σ)) ∼= ⟨a1, a2, b2, b3 | a1b2b−1
3 a−1

1 b−1
2 a2b3a

−1
2 ⟩ (1.3.3)

∼= ⟨α1, β1, α2, β2 | [α1, β1][α2, β2]⟩ (1.3.4)

which is the standard presentation of the surface group of genus 2.

We now have, for each natural number n, a model that randomly produces a

degree n branched cover X(σ) of the finite 2-complex X. We will be interested in

understanding topological and geometric properties of X(σ), as n gets large.

Definition 1.3.5. Given an event E = En depending on a parameter n, E holds

asymptotically almost surely if it holds with probability 1−o(1). Thus the probability

of success goes to 1 in the limit as n→ ∞.

1.3.3 Connectedness of branched covers

Our random model associates to t-tuples of elements in the symmetric group, cho-

sen independently with uniform distribution, a corresponding branched cover. Our

goal is now to translate interesting properties of the branched cover X(σ) into prop-

erties of the t-tuple in the symmetric group. We can then hope to leverage our
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understanding of random elements in symmetric groups to analyze whether or not

the property holds for random branched covers in our model. As an easy example,

let us consider the connectedness of the branched cover.

Lemma 1.3.6. The branched cover X(σ) is connected if and only if the subgroup

generated by the permutations σ1, . . . , σt acts transitively on the vertex set.

Proof. Connectedness of X(σ) is completely determined by connectedness of its 1-

skeleton. Given an edge path joining a pair of vertices, one can read off the corre-

sponding product of permutations (and their inverses) taking the initial vertex to the

terminal vertex. So if X(σ) is connected, then ⟨σ1, . . . , σt⟩ acts transitively on the

vertex set. Conversely, if the subgroup acts transitively on the vertex set, then given

any two vertices in X(σ) we can find a product of permutations (and their inverses)

taking one of these vertices to the other. This then gives us a sequence of edges

connecting the two vertices, showing the 1-skeleton of X(σ) is connected.

So understanding connectedness of our random branched covers is completely

equivalent to understanding when a randomly selected t-tuple of elements in Sym(n)

generate a transitive subgroup. This is a classically studied problem, and we have

the following result of Dixon [10]:

Proposition 1.3.7. The proportion of ordered pairs (σa, σb), where σa, σb ∈ Sym(n)

generate a transitive subgroup of Sym(n) is 1− 1
n
+O( 1

n2 ) as n→ ∞.

Translating this result back to our model gives us:

Corollary 1.3.8. Let Γ = ⟨u1, . . . , ut | r1, . . . , rs⟩, with corresponding presentation

2-complex X. If t ≥ 2, then X(σ) is asymptotically almost surely connected.
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Proof. The t = 2 case follows immediately from Proposition 1.3.7. For t ≥ 3, it

follows easily from the two generator case, because adding an additional generator

just adds more edges to an already connected graph. Equivalently, if the first two

elements σ1, σ2 already generate a transitive group, then adding additional generators

σ3, . . . , σt does not change transitivity of the action.

Remark 1.3.9. For the connectedness in Corollary 1.3.8, we had to assume that there

is more than one generator. For the single generator case, random coverings are not

asymptotically almost surely connected. In particular, the cover will be connected if

and only if the chosen permutation is an n cycle. Thus, the probability of connect-

edness is (n−1)!
n!

, which goes to 0 when n→ ∞.

This is the reason for our requirement that the rank of the 1-skeleton is ≥ 2

in our Main Theorem (see definition of acceptable 2-complex). Nevertheless, it is

obvious that for a single generator case, any random branched covering has a Gromov

hyperbolic fundamental group. Indeed, the presentation 2-complex has 1-skeleton

consisting of a single loop. Thus any covering of the 1-skeleton is just a disjoint union

of cycles. It follows that each connected component will have fundamental group that

is generated by a single element, hence cyclic. It will be isomorphic to Z if there are

no relations, and isomorphic to a (potentially larger) finite cyclic group if there is at

least one relation. In either case, the fundamental group is an (elementary) Gromov

hyperbolic group.
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1.3.4 Disks in random branched covering spaces

Let X be the presentation 2-complex for the presentation

Γ = ⟨u1, . . . , ut | r1, . . . , rs⟩

where t ≥ 2 and let f : X(σ) → X be the n-fold branched covering obtained from the

t-tuple of permutations σ = (σ1, . . . , σt), where σi ∈ Sym(n), i = 1 . . . t. Recall that

each disk Di ⊂ X corresponding to the relation ri has finitely many lifts Dij ⊂ X(σ)

in the branched cover. For each lift Dij ⊂ X(σ), the index of Dij, given by ind(Dij),

is the branching index of f at the center of Dij. Clearly, the sum
∑

j=1 ind(Dij) = n

for each i = 1, . . . , s.

We are interested in studying the small cancellation properties for a random

branched cover. We can view a piece b in X (respectively X(σ)) as a combinato-

rial path in the 1-skeleton X(1) (resp. X(σ)(1)). It is tempting to use the covering

map ρ : X(σ)(1) → X(1) to compare pieces in X(σ) with pieces in X. Unfortunately,

the image of piece in X(σ) might not be a piece in X, as it might map to a path

that has length greater than the boundary of the disks. Similarly, the connected lift

of a piece in X might not be a piece in X(σ), as it might be properly contained in an

overlap in X. For this reason, it is more convenient to work with overlaps. As over-

laps are defined in terms of the universal cover of the attaching loops, these behave

better with respect to the branched covering map ρ restricted to the one skeleton.

Indeed, we have the following:

Lemma 1.3.10. Let X be an acceptable polygonal 2-complex, X(σ) a branched cover

of X, and ρ : X(σ) → X the branched covering map. Then:
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• if (p,p′) is an overlap for the pair of 2-cells D,D′ in X, then every lift of (p,p′)

is an overlap in X(σ);

• if (p,p′) is an overlap in X(σ) for the pair of disks D̂, D̂′, then the pair defines

an overlap for the image pair of disks D = ρ(D̂), D′ = ρ(D̂′) in X.

Proof. Recall that the overlap (p,p′) is actually a pair of (equivalence classes of)

subpaths p ⊂ ∂̃D and p′ ⊂ ∂̃D′, with the property that the lifted attaching maps

α̃ : ∂̃D → X(1), β̃ : ∂̃D′ → X(1) coincide on the subpaths p,p′. Given any pre-image

vi of the unique vertex v ∈ X(1), covering space theory tells us we can lift the maps

α̃, β̃ to maps ᾱ : ∂̃D → X(σ)(1), β̄ : ∂̃D′ → X(σ)(1) based at the vertex vi. Since the

original maps α̃, β̃ coincide on the subpaths p,p′, the lifted maps will have the same

property. Moreover, since the original maps α̃, β̃ differ on the two edges immediately

preceding (respectively following) the subpaths p,p′, the same property holds for the

lifted maps. Finally, we note that the lifted maps ᾱ, β̄ are periodic, as they will cover

one of the connected lifts α̂, β̂ of the attaching maps α, β (the lifts based at the vertex

vi). These lifted attaching maps α̂ : ∂̂D → X(σ)(1), β̂ : ∂̂D′ → X(σ)(1) are defined

on finite covers ∂̂D → ∂D and ∂̂D′ → ∂D′. These define a pair of 2-cells D̂, D̂′ in

X(σ). We conclude that the pair (p,p′) is an overlap for the 2-cells D̂, D̂′.

Conversely, if we have an overlap (p,p′) in X(σ) for a pair of 2-cells D̂, D̂′, we

can project the overlap via the covering map ρ. More precisely, from the construction

of X(σ), the attaching maps α̂ : ∂D̂ → X(σ)(1), β̂ : ∂D̂′ → X(σ)(1) are lifts of the

attaching maps α : ∂D → X(1), β : ∂D′ → X(1) for the pair of 2-cells D,D′ in

X. This means there are finite covering maps π : ∂D̂ → ∂D, π′ : ∂D̂′ → ∂D′, and

commutative diagrams α ◦ π = ρ ◦ α̂, β ◦ π′ = ρ ◦ β̂.
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The covering map π allow us to identify the universal covers of ∂D̂ and ∂D, via

the lift of the covering map π̃ : ∂̃D̂ → ∂̃D (and similarly for π′, ∂D̂′, and ∂D′). With

this identification, the map ᾱ : ∂̃D̂ → X(σ)(1) descends to a map α̃ := ρ ◦ ᾱ ◦ π̃−1 :

∂̃D → X(1). Similarly, we have a map β̃ := ρ ◦ β̄ ◦ (π̃′)−1 : ∂̃D′ → X(1). Since

the maps ᾱ, β̄ agree on the subpaths p,p′ but differ on the immediately preceding

(and immediately following) edges, the same property is true for the composite maps

ρ ◦ ᾱ, ρ ◦ β̄. Using the identification π̃, π̃′ of universal covers, we can view p,p′ as

subpaths in ∂̃D, ∂̃D′. This shows that (p,p′) defines an overlap for the 2-cells D,D′,

completing the proof of the Lemma.

An immediate consequence of the lemma is the following

Corollary 1.3.11. Let X be an acceptable polygonal 2-complex, and X(σ) a branched

cover of X. If the 2-cell D̄ in X(σ) is an index k branched cover of the 2-cell D in X,

then the overlap ratios are related by o(D̄) = o(D)/k. In particular, o(X(σ)) ≤ o(X).

Proof. From the lemma, we see that the lengths of overlaps for D coincide with the

lengths of overlaps for D̄. Since ℓ(∂D̄) = k · ℓ(∂D), the result follows.

As we remarked earlier, the small cancellation condition C ′(λ) (where 0 < λ < 1)

for a 2-cell D is implied by o(D) < λ. So we immediately obtain:

Corollary 1.3.12. If a 2-cell in X satisfies the o(D) < λ, then all of its lifts in X(σ)

satisfy C ′(λ).

We denote by RL (respectively RS) the length of the longest (resp. shortest)

relation in the presentation Γ. Let us introduce some constants associated to the

presentation 2-complex X.
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In view of Lemma 1.2.7, there is a uniform bound on the length of overlaps in X.

We introduce the parameter O := R2
L + RL, which serves as a global upper bound

on the length of overlaps in X. In view of Lemma 1.3.10, O also serves as an upper

bound on the length of overlaps in any of the branched covers X(σ). Since all the

relators in Γ have length ≥ RS, we also obtain the upper bound on the overlap ratio

o(X) < O
RS

. We are looking for branched covers with overlap ratio less than λ. To

this end, let us introduce the critical index I := O
λRS

. From Corollary 1.3.11, we know

that any disk D in a branched cover X(σ) whose index is ≥ I automatically has

o(D) < λ, thus satisfies C ′(λ).

Definition 1.3.13. Given an acceptable polygonal 2-complex X, and λ ∈ (0, 1), a

disk D in a branched cover X(σ) is called a λ-good disk if its index is greater than

or equal to I. A disk that is not a good-disk is called a λ-worrisome disk. We will

typically be working with a fixed value of λ, and refer to λ-good disks as good disk

and λ-worrisome disk as a worrisome disk.

All the λ-good disks satisfy C ′(λ) small cancellation in X(σ). However, this is not

true for λ-worrisome disks, which may or may not satisfy the C ′(λ) small cancellation

condition.

For the relators r1, . . . , rs and a random choice of permutations σ = (σ1, . . . , σt),

σi ∈ Sym(n), we define another type of permutation ri(σ) ∈ Sym(n) that represents

the structure of lifts of the disk Di. In X(σ), we first attach a disk for a lift of Di of

the relation ri starting from the vertex v1. Let v1 = vi(1) and let vij(1) be the vertex

that is arrived at after following the letters of ri a total of j times. Let k ≥ 1 be
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the smallest such that vik(1) = v1. Then (vi(1) · · · vik(1)) forms a cycle of length k with

entries corresponding to the indices of the vertices appearing in the procedure. We

repeat the same process at a vertex that is not already obtained in a previous cycle

until there are no vertices remaining. Finally we get a permutation of n elements and

denote it ri(σ). The cycle lengths of ri(σ) have a one-to-one correspondence with the

indices of lifts of Di. The permutation ri(σ) is the result of applying the word map

ri : Sym(n)×· · ·×Sym(n) → Sym(n) (see [26]) to the t-tuple σ of permutations. We

will use the following result from [26, Corollary 1.5]:

Proposition 1.3.14. Let k ≥ 2 be a fixed integer. If the permutation ri is not a proper

power, then the expected number of cycles of length k in ri(σ) is
1
k
+O(n−π(ri)), where

π(ri) ≥ 2 is the primitive rank defined in [26].

Let Ln(k) be the total number of cycles of length at most k in all of the permuta-

tions r1(σ), . . . , rs(σ) ∈ Sym(n). Note that, by hypothesis, none of the ri are proper

powers, so applying Proposition 1.3.14, we have

E
(
Ln(k)

)
= s(1 +

1

2
+ · · ·+ 1

k
) +O(n−π(r1) + · · ·+ n−π(rs)).

As a result, when n→ ∞ the expected value E(Ln(k)) → s(1+ 1
2
+ · · ·+ 1

k
). Knowing

the asymptotics of the expected value allows us to deduce information about the tails

of the probability distributions.

Lemma 1.3.15. For any ϵ > 0, there exists N,m ∈ N such that if n ≥ N , then

P
(
Ln(k) ≤ m

)
> 1− ϵ

2
.

Proof. Suppose not. Then there exists ϵ > 0 with the property that for each m, we

can find a sequence nj → ∞ such that P
(
Lnj

(k) ≥ m+1
)
> ϵ

2
. We can now estimate
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the expectation of Lnj
(k) from below:

E
(
Lnj

(k)
)
=

∞∑
i=0

iP
(
Lnj

(k) = i
)

≥
∞∑

i=m+1

(m+ 1) · P
(
Lnj

(k) = i
)

= (m+ 1) · P
(
Lnj

(k) ≥ m+ 1
)
> (m+ 1) · ϵ

2

For a fixed choice of m, this estimate holds for all the nj in the sequence. Applying

this to the specific case where m = 2s
ϵ
·
(
1+ 1

2
+ · · ·+ 1

k

)
, we obtain an infinite sequence

of integers nj → ∞ where

E
(
Lnj

(k)
)
> (m+ 1) · ϵ

2

> s
(
1 +

1

2
+ · · ·+ 1

k

)
+
ϵ

2

On the other hand, we saw earler that the expected value E(Ln(k)) converges to

s(1 + 1
2
+ · · ·+ 1

k
) as n→ ∞, giving us a contradiction.

Note that in the proof above, we are not assuming the existence of limiting dis-

tribution of Ln(k), but using the expected value of Ln(k) for finite n ∈ N and its

limit as n → ∞. We can interpret Proposition 1.3.14 and Lemma 1.3.15 in terms of

random branched coverings.

Corollary 1.3.16. Let X be an acceptable 2-complex. Then given any integer k, and

ϵ > 0, we can find an integer M = M(k, ϵ) with the following property: for any n

sufficiently large, with probability ≥ 1 − ϵ
2
a random degree n branched cover X(σ)

contains ≤M disks of index ≤ k.

Next we turn our attention to topological properties of disks
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Lemma 1.3.17. Let X be an acceptable 2-complex, and m a given integer. Then

asymptotically almost surely the random branched covers of X have all disks of index

m that are injectively embedded.

Proof. We will count all possible random branched coverings and see how many of

them contain non-injective lifts of index m. Since the number of generators is t and

|Sym(n)| = n!, the number of choices for permutations σ = (σ1, . . . , σt) is (n!)t. In

other words, there are (n!)t random branched coverings of X.

Let r be a relator. By the Proposition 1.3.14, the expected number of lifts of r

of index m in a random branched covering is 1
m
+ O(n−π(r)). Since there are (n!)t

random branched coverings, the total number of lifts of r of index m in all possible

random branched coverings is (n!)t
(

1
m
+O(n−π(r))

)
.

Now, in all possible branched coverings, we count the total number of injective

lifts of the relator r of index m. Let r = w1 . . . w|r| where each

wi ∈ {u1, . . . , ut, u−1
1 , . . . , u−1

t },

the symmetric generating set. For such a lift D ⊂ X(σ) of r, since it has index m,

the length of ∂D is m|r|. We label the m|r| edges of ∂D as in Example 1.3.3. Recall

that in a branched covering, there are tn total edges denoted uij where i = 1, . . . , t

and j = 1, . . . , n. To be injective, ∂D has to contain m|r| distinct vertices. Assume

that n is sufficiently large so that n ≥ m|r|. Choosing the m|r| distinct vertices in

order amounts to n(n− 1) . . . (n−m|r|+ 1) possibilities. Once we choose the labels

on the vertices of ∂D, the labels on the oriented edges along ∂D will be determined

by r = w1 . . . w|r|. Thus there are n(n− 1) . . . (n−m|r|+1) different ways of labeling

the boundary of an injective lift D. Again, we remark that these lifts may occur
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in different branched covers. Note that since cyclic permutations of the labeling on

disk’s boundary represent the same lift, there are 1
m
n(n−1) . . . (n−m|r|+1) different

ways of labeling the boundary up to cyclic relabeling.

Now we count all possible branched coverings X(σ) that contain the choice of

∂D with a given injective labeling. Let ℓi be the number of occurrences of a lift of

the generator ui along ∂D. Obviously,
∑t

i=1 ℓi = ℓ(∂D) = m|r|. For the remaining

n − li lifts of ui that are not contained in the labeled ∂D, there are n − ℓi possible

initial vertices for the lifts, and n− ℓi possible ending vertices for the lifts. Hence the

number of ways to place the remaining lifts of ui boils down to choosing a pairing

between the possible initial vertices and terminal vertices. There are (n − ℓi)! such

pairings. Ranging over all the edges, we obtain (n− ℓ1)! . . . (n− ℓt)! labeled branched

coverings that contain the lift D with the prescribed (injective) labeling on ∂D.

Thus in all possible branched coverings, the total number of injective lifts of r of

index m will be [
n(n− 1) . . . (n−m|r|+ 1)

]
·
[
(n− ℓ1)! . . . (n− ℓt)!

]
m

and therefore the total number of non-injective lifts of r in all possible branched

coverings is

(n!)t

m
−
[
n(n− 1) . . . (n−m|r|+ 1)

]
·
[
(n− ℓ1)! . . . (n− ℓt)!

]
m

+ (n!)tO(n−π(r)).

The total number of branched coverings that contain a non-injective lifts will be

bounded above by the total number of non-injective lifts in all branched coverings.

Let us denote by Pn(r) by the probability that a branched covering contains a non-

injective lift of r of index m. Then using the above estimate we obtain the upper
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bound

Pn(r) ≤
(n!)t − n(n− 1) . . . (n−m|r|+ 1)(n− ℓ1)! . . . (n− ℓt)!

m(n!)t
+O(n−π(r)).

With this upper bound in hand, we can easily compute the limit of Pn(r) as n→ ∞:

lim
n→∞

Pn(r) ≤ lim
n→∞

(n!)t − n(n− 1) . . . (n−m|r|+ 1)(n− ℓ1)! . . . (n− ℓt)!

m(n!)t

=
1

m
− 1

m
· lim
n→∞

n(n− 1) . . . (n−m|r|+ 1)(
ℓ1−1∏
i=0

(n− i)

)
. . .

(
ℓt−1∏
i=0

(n− i)

) .

Note that in the last term, the numerator and the denominator are both m|r|-degree

monic polynomials in n. As n → ∞, the ratio tends to one, and as a result

limn→∞ Pn(r) = 0. This tells us that in a random branched covering covering, all

lifts of the single relation r of index m are embedded asymptotic almost surely.

The probability that a branched covering contains a non-injective index m lift of

one of the finitely many relators r1, . . . , rs is less than
∑s

i=1 P (ri). Since the sum goes

to zero as n → ∞, we conclude that every lift of an ri index m are embedded in a

random branched covering asymptotic almost surely.

A similar argument can be used to control intersections of disks.

Lemma 1.3.18. Let X be an acceptable 2-complex, and M a given integer. Then

asymptotically almost surely in the random branched covers of X all disks of index at

most M are pairwise disjoint.

Proof. Consider a pair r, r′ of relations. We will start by considering disks D, D′ that

are lifts of the relations r, r′ of index ≤M .
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If r and r′ don’t have a common piece, any lifts D and D′ have no common edges

on their boundaries. So it is sufficient to consider the case that r and r′ have a piece

in common, i.e. r = pw and r′ = pw′. We first consider the case that p is the only

maximal piece contained in both r and r′. Then if D and D′ are lifts of r and r′

respectively, then by Remark 1.3.11, the subpath ∂D ∩ ∂D′ has the same length |p|

and we call the subpath by p for convenience.

We want to compute the probability that two lifts of index at mostM intersect in

some branched covering and show that it goes to 0 as n → ∞. Among (n!)t number

of all possible branched coverings, we count the total number of pairs (D,D′) such

that ∂D∩ ∂D′ ̸= ∅. The idea is very similar to the proof of Lemma 1.3.17. Note that

by Lemma 1.3.17, any lift of index ≤M is injective asymptotically almost surely. Let

m (resp. m′) be the index of D (resp.D′).

Since for a labeling of D (resp. D′), there are m (resp. m′) cyclic permutations

that actually represent the same disk.

When we first label ∂D with the edges in X(σ), there are n(n−1) . . . (n−m|r|+1)

number of ways of injective labeling. But for a labeling on ∂D, there are m different

cyclic permutations that actually represent the same disk. Thus we have 1
m
n(n −

1) . . . (n − m|r| + 1) ways of distinct injective labelings up to cyclic permutation.

Note that there are m possible ways to choose p ⊂ ∂D that intersects with ∂D′.

Once we choose a path p ⊂ ∂D, we label ∂D′ so that ∂D ∩ ∂D′ = p.

When we label ∂D′, the key idea is that there is no choice for the |p|+ 1 number

of vertices that are contained in p. So we choose m′|r′| − |p| − 1 number of vertices in

order so that ∂D′ contains m′|r| different vertices and intersect with ∂D only on |p|.

There are (n−m|r|)(n−m|r| − 1) . . . (n−m|r| −m′|r′|+ |p|+2) number of ways to
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label ∂D′ that are all cyclically distinct. Therefore we have

n(n− 1) . . . (n−m|r| −m′|r′|+ |p|+ 2) (1.3.5)

number of injective labeling on D and D′ that intersect on the piece p. Here, the

numerator has m|r|+m′|r′| − |p| − 1 number of factors.

Now, let ai be number of ui generator on the label of ∂D ∪ ∂D′. Obviously, we

have

t∑
i=1

ai = m|r|+m′|r′| − |p|. (1.3.6)

For a pair of labeledD andD′, we count the number of possible branched coverings

that contain D,D′. By using the same labeling process as 1.3.17 on remaining edges

to construct a branched coverings, we have (n− a1)!(n− a2)! . . . (n− at)! number of

branched coverings containing D and D′. Thus for given indices m and m′, we have

n(n− 1) . . . (n−m|r| −m′|r′|+ |p|+ 2)(n− a1)! . . . (n− at)! (1.3.7)

number of branched coverings that contain D and D′ of the given indices.

The total number of pairs of intersecting lifts (D,D′) of index ≤M in all possible

branched coverings is

∑
m,m′≤M

n(n− 1) . . . (n−m|r| −m′|r′|+ |p|+ 2)(n− a1)! . . . (n− at)! (1.3.8)

Here, in the summation, the numerator has nt− 1 number of factors.

In the general case, for two relations r and r′ that have more than one maximal

piece on the intersection, then the number of pairs of intersecting lifts of r and r′

of index≤ M in all possible branched coverings would be less than or equal to the

number in the Equation (1.3.8).
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The number of branched coverings that contains index ≤M lifts of r and r′ that

intersect is less than or equal to the number of pairs of intersecting lifts (D,D′) of

index ≤ M in all possible branched coverings. We denote the probability that a

branched covering contains intersecting lifts of r and r′ of index ≤M by P (r, r′) and

it is less than or equal to

∑
m,m′≤m

n(n− 1) . . . (n−m|r| −m′|r′|+ |p|+ 2)(n− a1)! . . . (n− at)!

(n!)t
. (1.3.9)

Since (1.3.9) goes to 0 as n → ∞, we see that in a branched covering, all lifts of r

and r′ of index ≤M are pairwise disjoint asymptotic almost surely.

Now, the probability that a random branched covering contains pair of intersecting

lifts of any two relators is less than or equal to
∑

r,r′∈{r1,...,rk} P (r, r
′). Since the

summation goes to 0 as n → ∞, we conclude that every lifts of index ≤ M pairwise

disjoint asymptotically almost surely.

Corollary 1.3.19. All worrisome-disks are pairwise disjoint in X(σ) asymptotically

almost surely.

1.4 Proof of the Main Theorem

Let Γ = ⟨u1, . . . , ut | r1, . . . , rs⟩ be a finitely presented group and X the presenta-

tion 2-complex where t ≥ 2. Let f : X(σ) → X be a n-fold random branched covering

obtained from random permutations σ = (σ1, . . . , σt) where σi ∈ Sym(n), i = 1 . . . t.

We are now ready to prove the Main Theorem in the special case of the presen-

tation 2-complex. For the convenience of the reader, we restate the special case.

31



Main Theorem. Let X be the presentation 2-complex associated to the finite pre-

sentation Γ = ⟨u1, . . . , ut | r1, . . . , rs⟩. We assume that the relations are cyclically

reduced, and that none of the relations are proper powers. Let λ ∈ (0, 1) be a given

constant, and let X(σ) be an n-fold random branched cover of X. Then X(σ) is

asymptotically almost surely homotopy equivalent to a 2-complex satisfying geometric

C ′(λ)-small cancellation.

Proof. Observe that the presentation 2-complex X is an acceptable 2-complex. The

parameters O and I are defined as in Section 1.3.4. Observe that all the parameters

we have introduced so far only depend on the initial complex X, and the small

cancellation parameter λ that we want to achieve.

Now given an ϵ > 0, we want to show that for all sufficiently large n, a random

branched cover X(σ) is homotopy equivalent to a 2-complex satisfying geometric

small cancellation with probability > 1− ϵ. We now introduce some parameters that

also depend on the given ϵ. From Corollary 1.3.16, Lemma 1.3.17, and Lemma 1.3.18,

we can choose an N sufficiently large, so that for all n > N , with probability > 1− ϵ,

a random branched cover X(σ) has the following properties:

1. the number of disks in X(σ) of index ≤ I is ≤M (where M is fixed parameter

provided by Corollary 1.3.16);

2. all disks of index ≤ K are injective;

3. all disks of index ≤ K are pairwise disjoint.

Where here the constant K in statements (2) and (3) is given by the value:

K := R−1
S (1 + λ−1)O

(
M2I(RLO)2

)
+R−1

S λ−1O
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Thus the choice of K depends (via M) on the choice of ϵ. To complete the proof,

it suffices to show that these branched covers are homotopy equivalent to a complex

satisfying C ′(λ)-small cancellation.

Observe that, if X(σ) has no worrisome disks, then all disks in X(σ) have overlap

ratio < λ and X(σ) itself satisfies C ′(λ)-small cancellation. But in general, most of

the X(σ) will contain some disks of index ≤ I. To analyze these branched covers, we

partition the disks in X(σ) according to their index:

• small disks are those with index ≤ I,

• medium disks are those with index > I but ≤ K

• large disks have index > K.

By the definition of worrisome disks, the set of small disks are exactly the same as

the set of worrisome disks. Since these are the disks which might have overlap ratio

> λ, we construct a new space Y (σ) by collapsing each of the small disks in X(σ) to

a point. There is a natural map quotient map q : X(σ) → Y (σ).

Fact 1: The map q is a homotopy equivalence.

To check that the quotient map is a homotopy equivalence, recall that quotienting

out a contractable subcomplex from a CW-complex yields a homotopy equivalence.

From property (2), small disks are embedded, hence have image in X(σ) that are

homeomorphic to D2. From property (3), small disks are pairwise disjoint. Collapsing

them one by one yields a finite sequence of homotopy equivalences fromX(σ) to Y (σ).

Next we need to establish that Y (σ) satisfies C ′(λ)-small cancellation. It suffices

to check that all the overlap ratios of disks in Y (σ) are < λ. Since disks in Y (σ) are
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images of disks in X(σ), we will use the same terminology of “medium” and “large”

disks in Y (σ). There will not be any “small” disks in Y (σ) as those disks are collapsed

to points.

Fact 2: If D̂ is a medium disk in Y (σ), then it has overlap ratio o(D̂) < λ.

The disk D̂ is the image of a medium disk D in X(σ). Since the index of D is

greater than the critical index I, we have o(D) < λ. From property (3), the disk D

is disjoint from all the small disks. So the quotient map q leaves D and all edges

incident to the curve ∂D unchanged. It follows that o(D̂) = o(D) < λ, as desired.

This leaves us with checking the overlap ratio of large disks in Y (σ). In order to

do this, we need to give a lower bound on the length of the large disk, and an upper

bound on the length of the overlaps in the large disk. As before, we let D̂ be a large

disk in Y (σ), which is the image of a large disk D in X(σ). The boundary ∂D̂ is

obtained from ∂D by collapsing the subpaths that are images of overlaps with small

disks.

Note that, since K > O, the length of ∂D exceeds the length of any of the

overlaps in X(σ). So if (p,p′) is an overlap with p ⊂ ∂̃D, we can instead view

p as an embedded path in ∂D. We know from Corollary 1.2.8 that there are only

finitely many overlaps inX(σ), so we can list out all the overlaps (p,p′) between D̂ (so

p ⊂ ∂D) and small disks. This gives us a finite list of overlaps {(p1,p
′
1), . . . (pk,p

′
k)},

cyclically ordered according to the initial vertex of the paths pi ⊂ ∂D. Each p′
i lies

in ∂̃Di where Di is a small disk in X(σ). The boundary ∂D̂ is obtained from ∂D by

collapsing each of the intervals p ⊂ ∂D to points.
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Fact 3: For any large disk D, there are at most ≤M2I(RLO)2 many overlaps (p,p′),

where p ⊂ ∂D and p′ ⊂ ∂̃Di is in any of the short disks Di.

Applying Lemma 1.3.10, any such overlap covers an overlap (q,q′) in X. There

are ≤ M short disks in X(σ), hence ≤ M images of short disks in X. Since each

image disk E in X has at most ≤ RLO paths that could serve as q′, the total number

of possible image overlaps (q,q′) in X is bounded above by M(RLO)2.

Lastly, given a candidate image overlap (q,q′) in X, we need to check how many

pre-images in X(σ) correspond to overlaps between D and one of the small disks.

The image of the common path q′ in X(1) lifts to n paths inside X(σ)(1), each of

them lying on some lift of the disk E. However, we know that there are at most ≤M

lifts that are small disks, and as each of them have index ≤ I, there are ≤ MI lifts

of q′ along small disks. Since there is a bijection between the lifts of q′ and those of

q (they define the same path in X(1)), we see that the pair (q,q′) has at most ≤MI

lifts that are overlaps between the given disk D and one of the short disk lifts of E.

Combining this with the estimate on the number of possible projected overlaps in X

from the previous paragraph, Fact 3 follows.

From the upper bound on the number of overlaps, we can deduce a lower bound

on the length of the boundary ∂D̂ for the quotient disk. The other ingredient we will

need is to compute an upper bound on the size of the overlaps for the quotient disk

D̂. We have:

Fact 4: Any overlap for D̂ has length ≤
(
M2I(RLO)2 + 1

)
O.

To see this, let us consider an overlap between D̂ and some other disk Ê in the

quotient space Y (σ). These are images of disksD,E insideX(σ), and we would like to
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relate the overlaps in X(σ) between D,E with those in Y (σ) between D̂, Ê. Observe

that if we have an overlap in X(σ) with the property that the two edges preceding

and following survive in the quotient space, then the image will be an overlap in Y (σ).

But if the preceding and/or following edges are in the subsets being collapsed, then

we can potentially lose the “witness” to the start/end of the overlap. In that case,

in the quotient space the overlap could continue, as the subsets where they differed

can be collapsed down to points. This would result in a potentially longer overlap in

Y (σ), obtained by concatenating two overlaps in X(σ).

Now the only way such a concatentation can occur is if the overlap in X started

and ended on part of a short disk. More precisely, along the disk D we have a

collection of paths pi ⊂ ∂D that come from overlaps with small disks. From Fact

3 there are at most ≤ M2I(RLO)2 such overlaps. So at most ≤ M2I(RLO)2 + 1

concatenations can occur. Since overlaps in X(σ) have length at most O, Fact 4

follows.

Finally, with Fact 3 and Fact 4 in hand, it is straightforward to estimate the

overlap ratio of D̂. Indeed, D̂ is the image of the long disk D in X(σ) under the

quotienting map. Since D is a long disk in X(σ), it is a branched cover of a disk

in X, with index ≥ K. So the length of D is bounded below by ≥ KRS. When

computing the length of D̂, we see from Fact 3 that at most ≤M2I(RLO)2 overlaps

with short disks get collapsed to points. Since each of these overlaps has length ≤ O,

we get the lower bound

ℓ(∂D̂) ≥ KRS −M2I(RLO)2O

≥ λ−1OM2I(RLO)2 + λ−1O
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where the second inequality follows from the chosen value of K. Now using the

estimate for the overlap length from Fact 4 we get:

o(D̂) ≤
(
M2I(RLO)2 + 1

)
O

λ−1OM2I(RLO)2 + λ−1O
= λ

as desired. Since this estimate holds for any long disk in ourX(σ) satisfying conditions

(1), (2), (3), it concludes the proof of the theorem.

1.5 Concluding Remarks

We end our paper with some general remarks on topics related to our random

models and our main theorem.

1.5.1 Multiple vertex case

The attentive reader will notice that our Main Theorem is stated for acceptable

2-complexes, but that in our proofs we work exclusively with the special case of a

presentation 2-complex. In fact, the two statements are equivalent, as we now explain.

Given an arbitrary finite acceptable 2-complex X, we can take a spanning tree T

in the 1-skeleton of X, and create a new 2-complex Z by collapsing T to a point. By

construction, the 1-skeleton Z(1) is a bouquet of circles, so Z has a single vertex. The

quotient map ϕ : X → Z is a homotopy equivalence, since it is obtained by collapsing

the contractable set T . Each polygonal 2-cell in X gives rise to a polygonal 2-cell in

Z. Moreover, the restriction of ϕ to the 1-skeleton is a homotopy equivalence between

X(1) and Y (1), so provides an isomorphism ϕ# : π1(X
(1)) → π1(Y

(1)) . It follows that

an attaching map α for a disk in X is a proper power in π1(X
(1)) if and only if the

corresponding attaching map ϕ ◦ α for a disk in Z is a proper power. Similarly a
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pair of disks have identical attaching map in π1(X
(1)) if and only if the corresponding

attaching maps in π1(Z
(1)) are identical. This shows that Z is also an acceptable

2-complex, but with a single vertex, so can be viewed as a presentation 2-complex.

Finally, our model for random branched covers of Z are obtained by taking or-

dinary degree n covers of the 1-skeleton Z(1), and inducing a branched cover by at-

taching disks along all the connected lifts of an attaching map (see Section 1.3.1 and

Section 1.3.2). From covering space theory, all information on lifting is encoded in the

fundamental group of the 1-skeletons. Hence the group isomorphism ϕ# allows you

to obtain a corresponding finite cover of X(1), and a homotopy equivalence between

this finite cover and the 1-skeleton of the branched cover Z(σ). Under this homotopy

equivalence, we can transfer the lifts of the attaching maps to the finite cover of X(1)

and form a corresponding branched cover X(σ) of X. By construction, there is then

an induced homotopy equivalence X(σ) ≃ Z(σ). It follows that topological results

about the random model can be transferred from the presentation 2-complex case to

the general case of acceptable polygonal 2-complexes.

1.5.2 Relations that are proper powers

One of the conditions in our definition of acceptable 2-complexes is that none of

the attaching maps for the 2-cells represent proper powers in π1(X
(1)). This property

was used in the proof of Lemma 1.2.7, showing that acceptable 2-complexes have finite

overlap ratio. There is however a more fundamental reason for requiring this property.

We introduced in Definition 1.2.1 the notion of a branched cover for a 2-complex X,

and in Section 3.2 explained how to associate, to each element σ ∈ Sym(n)k a space

X(σ). Let us consider this construction when some of the relations are proper powers.
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Example 1.5.1. Consider the finite group Z2
∼= ⟨x | x2⟩. The presentation two

complex X has a single loop labelled x, and a single attached by the degree two

map on the circle. So X is homeomorphic to the projective plane RP 2, a closed

non-orientable surface. Any branched cover of X would also have to be a closed

surface.

Now consider the space X(σ), where σ = (12 . . . n). The 1-skeleton of X(σ) is

a cycle of length n. There is only one lift of the attaching map of degree 2 to this

1-skeleton. This is either a degree one map if n is even, or a degree two map if n

is odd. So the space X(σ) is either homeomorphic to RP 2 (if n odd) or to D2 (if n

even). Of these X(σ), only the n odd case produces a branched cover.

The example above might cause some concern about our model for random branched

covers. However, for acceptable 2-complexes, we can check that we do indeed obtain

branched covers.

Lemma 1.5.2. Let X be an arbitrary presentation 2-complex. If none of the relations

are proper powers, then X(σ) is a branched cover.

Proof. We first note that there is a natural map X(σ) → X induced by the covering

map on the 1-skeleton, extended to a branched cover from each 2-cell in X(σ) to its

image 2-cell in X. It is straightforward to check that every point in X that is not

the center of a 2-cell has exactly n pre-images, where n is degree of the covering on

the 1-skeleton. By construction, in the interior of the 2-cells the map is a branched

covering. So we are left with checking the local topology along pre-images of edges.

In a polygonal 2-complex, the local topology at a point inside an edge is easy to

describe. Let k denote the number of occurrences of that edge (and its inverse) along
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the boundary labels of all the attached 2-disks. Then locally, a closed neighborhood

of the point is homeomorphic to the product I × Ck, where Ck is the cone over a

discrete set of k points. Under this identification the edge corresponds to the product

of I times the cone point.

So to decide whether the canonical map X(σ) → X is a covering map, it suffices

to compare, for a loop e ⊂ X and a pre-image edge ei ⊂ X(σ), the number of

occurrences of those edges along labels of disks in X and X(σ) respectively. Take one

of the local branches of the neighborhood I×Ck of the edge e in X. This corresponds

to a unique edges in a disk D with label e. We can lift the boundary of this disk

starting at that labeled edge e, with initial lift ei. This will yield a lifted disk D′ inside

X(σ). If we can construct such a lift for each edge labeled e in the boundary labels

of disks in X, then we would get the exact same number of local branches around ei

in X(σ). The problem that arises, as illustrated in the previous example, is that one

could potentially start lifting from distinct edges labeled e in the boundary of a disk

D, whose lifts give you the identical path in X(σ)(1). In that case, instead of having

two local branches from the two distinct lifts, we will only obtain one local branch,

as our construction of X(σ) associates one disk to this closed loop.

Next we notice that this situation can only happen if the label on ∂D has a partial

rotational symmetry. Namely, if s is the distance along ∂D where the two e labels

occur, we note that rotating the labeling by s gives back the identical labeling. Since

1 ≤ s < ℓ(∂D), the bi-infinite word on ∂̃D is now periodic under both a ℓ(∂D)-

translation, and an s-translation. Arguing as in the proof of Lemma 1.2.7, one sees

that the bi-infinite word is in fact periodic with period GCD(s, ℓ(∂D)) < ℓ(∂D).
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This implies that the relation corresponding to the disk D is a proper power, a

contradiction.
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Chapter 2: Codimension Two Complements in Hyperbolic

Products

2.1 Introduction

For any m,n ≥ 2, suppose thatM is a finite-volume manifold with universal cover

isometric to the product of hyperbolic spaces, Hm × Hn, and containing a (possibly

disconnected) embedded, compact, codimension two totally geodesic submanifold S

whose lifts to Hm × Hn are isometrically embedded copies of Hm−1 × Hn−1. Let

N = M \ S and, for some integer d > 2, suppose that the ramified branched cover

Xd of M about S is a smooth manifold. In this paper we aim to study geometric and

topological properties of N and Xd.

The reason for considering submanifolds of codimension two in our definition of N

is that their removal significantly alters the fundamental group. If the codimension

were higher, then we would have that π1(N) = π1(M), whereas if S had codimension

one then there is a well-known simple relationship between π1(N), π1(M). In the

codimension two setting, this connection is more complicated and rich. In the present

setting, it is straightforward that π1(N) is an overlattice in the sense of Gromov [19,

Pg. 126], that is, π1(N) surjects onto the lattice π1(M), with infinitely generated
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kernel. We include the study of the branched cover Xd since many of our geometric

constructions will apply to these manifolds as well.

Geometry of (M,S)

From a geometric point of view we look to answer the following two questions:

1. Does N admit a complete, finite volume, nonpositively curved metric which

turns S into a cusp of N?

2. Does Xd admit a nonpositively curved Riemannian metric?

There exists a lattice Γ < Isom(Hm×Hn) such that M = (Hm×Hn)/Γ. It turns out,

maybe somewhat surprisingly, that the difficulty in answering questions (1) and (2)

depends on properties of Γ. The simplest case is when Γ splits as a product. That is,

when there exist lattices Γm < Isom(Hm) and Γn < Isom(Hn) such that Γ = Γm×Γn.

In this case we can prove the following, where statement (2) in Theorem 2.1.1 is due

to Fornari and Schroeder [15].

Theorem 2.1.1. Suppose that Γ = Γm×Γn splits as a product, and let M,S,N , and

Xd be as defined above. Then

1. N admits a complete, finite volume, A-regular1, nonpositively curved Rieman-

nian metric, and

2. Xd admits a nonpositively curved Riemannian metric.

Our proof of Theorem 2.1.1 (1) uses the confluence of an idea of Fornari–Schroeder

[15] and a straightforward adaptation of the A-regular metric constructed by Bele-

gradek in [4]. The latter is similar to the “funnel” construction of Avramidi and

1See Definition 2.3.9
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Pham in [2]. But, unfortunately, the arguments for Theorem 2.1.1 are insufficient for

when Γ is not a product (including the argument for (2) in [15]). The reason for this

is as follows. Our proof constructs a nonpositively curved metric g̃ on the universal

cover Hm×Hn. But there exist points arbitrarily far away from Hm−1×Hn−1 where g̃

does not agree with the product hyperbolic metric h̃m× h̃n. We will show that, when

Γ splits as a product, g̃ still descends to a well-defined metric g on M (Proposition

2.3.4). But there is no reason to believe that g will be well-defined when Γ is not a

product. See Remarks 2.3.5 and 2.4.5 for more information.

Corollary 2.1.2. Suppose that Γ = Γm × Γn splits as a product, and let M,S, and

N be as defined above. Then N is aspherical.

Remark 2.1.3. In order to avoid confusion, throughout this paper a metric g̃ with a

“tilde” will denote a metric on the universal cover, whereas we drop the “tilde” and

use g for the corresponding metric on our manifold. We will sometimes also drop

the “tilde” in subscripts and in calculations when the metric should be clear from

context.

The other two cases are when Γ is reducible and when Γ is irreducible (see Def-

inition 2.2.1). If Γ is reducible then it contains a product lattice as a finite index

subgroup (Remark 2.2.2). This gives us the following Corollary.

Corollary 2.1.4. Suppose that Γ < Isom(Hm × Hn) is reducible, and let M and S

be as defined above. Then M admits a finite cover M with lift S of S such that

1. N = M \ S admits a complete, finite volume, A-regular, nonpositively curved

Riemannian metric, and
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2. Xd, the d-fold ramified cover of M about S, admits a nonpositively curved Rie-

mannian metric.

The latter statement, of course, assumes that the branched cover Xd is a smooth

manifold.

Remark 2.1.5. Suppose Γ is reducible but not a product. Then N has a finite cover

N = (Hm×Hn)/Γ with Γ a product, and so N admits a nonpositively curved metric.

It is tempting to think that one can construct an action of the finite group G = Γ/Γ

on N to define this nonpositively curved metric on N . But such an action would

induce a G-action on the space of nonpositively curved metrics on N via the pullback

metric, and one can find a G-equivariant nonpositively curved metric on N exactly

when this induced action has a fixed point. It is unknown to the authors if this is

possible, but results like those in [13] make this seem unlikely in general.

When Γ is irreducible, the best that we can prove is that N and Xd admit an “al-

most nonpositively curved metric”. We say that a Riemannian manifold Y with finite

volume is almost nonpositively curved if, given any ε > 0, Y admits a Riemannian

metric with all sectional curvatures bounded above by ε and with volume bounded

above by some constant Cvol independent of ε. Our precise statement is as follows.

Theorem 2.1.6. Suppose that Γ < Isom(Hm ×Hn), and let ε > 0. Let M,S,N , and

Xd be as defined above.

1. The manifold N admits a complete Riemannian metric of almost nonpositive

curvature. Moreover, one can choose Cvol = vol(M, hm × hn) + ξ for any ξ > 0.

2. The branched cover Xd is almost nonpositively curved. In addition, one can

choose Cvol = d · vol(M, hm × hn) + ξ for any ξ > 0.
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Remark 2.1.7. Our definition of almost nonpositive curvature for a general manifold

is not equivalent to the definition that is frequently used for compact manifolds (see,

for example, [17] or [3]). Using Chern-Weil theory and an argument similar to that in

[9], one can show that a 4-manifold with almost nonpositive curvature (in our sense)

has nonnegative Euler characteristic. In particular, Theorem 2.1.6 is nontrivial in

that it cannot apply to any 4-manifold with negative Euler characteristic.

The above Theorem is true for any lattice Γ, but we are mainly interested in Γ

irreducible. In this case, we must have m = n. Also, for statement (1) above note

that the product hyperbolic metric h̃m× h̃n descends to a nonpositively curved metric

on N , but this metric fails to be complete at S. Lastly, note that we do not make any

assumptions about the normal injectivity radius of S in M (besides that it is positive

since S is compact). Theorem 2.1.6 asserts that N and Xd admit metrics with all

curvatures less than ε independent of the size of the normal injectivity radius of S.

We prove Theorem 2.1.6 in the standard way: we write the product metric h̃m× h̃n

on Hm ×Hn in polar coordinates about Hm−1 ×Hn−1 (equation (2.3.7)), we consider

the corresponding warped-product metric λ̃ (2.3.8), we calculate formulas for the sec-

tional curvature tensor of λ̃ (Theorem 2.3.6), and then we attempt to find coefficient

functions so that λ̃ has bounded volume, nonpositive curvature, and satisfies our de-

sired properties. The difficulty, of course, is that at each point of M there are many

2-planes with curvature 0 with respect to the metric hm × hn. So, in one direction,

there is no room for error in this warping procedure. In light of [40], it is certainly

possible that one or both of N and Xd do not admit a nonpositively curved metric

with the desired properties, but we do not know how to prove this.
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We now describe how our results above fit into the existing literature. Given

M as above, any embedded, compact, connected, totally geodesic, codimension two

submanifold S ofM , has universal cover S̃ given by exactly one of the following three

types:

1. S̃ is isometric to either Hm−2 ×Hn or Hm ×Hn−2,

2. S̃ is isometric to Hm−1 ×Hn−1,

3. m = n = 2 and S̃ is isometric to H2 which (up to isometry) has been diagonally

embedded in H2 ×H2 .

We first consider complete, finite volume metrics on N that turn S into a cusp.

In Case (1), N admits a complete, finite-volume, non-positively curved, A-regular

metric by a straightforward extension of a result of Belegradek [5] to the product

case. Our stated results pertain to case (2). In Case (3), it is presently unknown

if N admits such a metric. A similar study for complex hyperbolic manifolds is

contained in [4] and [32]. However, in that setting, the consideration of products of

complex hyperbolic manifolds is not interesting, as the only type of codimension two

totally geodesic real submanifolds not included in case (1) are induced by diagonal

embeddings of CH1 into CH1 × CH1, which is precisely Case (3) above. Lastly,

note that quaternionic (dimension > 1) and Cayley hyperbolic manifolds do not have

totally geodesic submanifolds with real codimension two.

We now turn our attention to metrics on branched cover manifolds. The fact that

branched covers X of manifoldsM from Case (1) above admit a non-positively curved

metric is a straightforward extension of the famous Gromov-Thurston construction

[20]. Case (2) is again considered above, where we include the work of Fornari and
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Schroeder [15]. Conversely, Stadler [40] has shown that such a result does not hold

in the setting of Case (3). More precisely, if M is modeled on H2 × H2 and S lifts

to the diagonal in H2 ×H2 (up to isometry), then any d-fold branched cover X over

M does not admit a non-positively curved Riemannian metric. This suggests that,

in the setting of Case (3), M \ S might not admit a complete, finite-volume, non-

positively curved Riemannian metric, and also lends evidence that Theorem 2.1.6

may be optimal. In the complex hyperbolic setting, similar branched covers were

recently constructed in important work of Stover–Toledo [42], and interesting nega-

tively curved metrics were constructed on collections of these manifolds in [43] and

[34].

2.2 Lattices in Isom(Hm ×Hn)

In this section, we recall some basic facts about locally symmetric orbifolds M

whose universal cover is isometric to Hm ×Hn, for m,n ≥ 2.

Throughout we let qm denote the standard quadratic form on Rm+1, which is

defined by the formula

qm(x1, . . . , xm+1) = x21 + · · ·+ x2m − x2m+1. (2.2.1)

The hyperboloid model of hyperbolic space is then given by

Hm =
{
(x1, . . . , xm+1) ∈ Rm+1 | qm(x1, . . . , xm+1) = −1, xm+1 > 0

}
, (2.2.2)

and the orientation preserving group of isometries, Isom+(Hm), of this model is given

by

SO0(m, 1) =
{
A ∈ SLm+1(R) | qm(Ax) = qm(x), ∀x ∈ Rm+1

}◦
,
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where the notation on the righthand side of this equation denotes the identity com-

ponent. In particular,

SO0(m, 1)× SO0(n, 1) ∼= Isom+(Hm)× Isom+(Hn) ≤f.i. Isom
+(Hm ×Hn), (2.2.3)

where the notation means that this is a subgroup of finite index. For ease of notation,

we let Gm = SO0(m, 1) throughout the remainder of this section.

Recall that two discrete subgroups Γ,Γ′ < Isom+(Hm × Hn) are commensurable

(in the wide sense) if there exists g ∈ Isom+(Hm×Hn) such that Γ∩gΓ′g−1 is a finite

index subgroup of both Γ and gΓ′g−1. Geometrically this is equivalent to (Hm×Hn)/Γ

and (Hm × Hn)/Γ′ having a common finite cover. The notion of commensurability

forms an equivalence relation and we will primarily be interested in commensurability

classes of subgroups (equivalently, orbifolds). As such, Equation (2.2.3) implies that

we may focus our attention on subgroups Γ < Gm ×Gn.

We call Γ < Gm ×Gn a lattice if Γ is discrete and the quotient (Gm ×Gn)/Γ has

finite Haar measure, equivalently, if the orbifold (Hm ×Hn)/Γ has finite-volume. If a

lattice Γ is additionally torsion-free, then the quotient (Hm×Hn)/Γ is a finite-volume

manifold. Such lattices are always finitely generated [38, Cor 13.15] and therefore

Selberg’s lemma [39, Lem 8] allows one to find a finite index subgroup Γ′ ≤ Γ which

is torsion-free and consequently a finite-volume manifold (Hm×Hn)/Γ′ which finitely

covers (Hm × Hn)/Γ. Owing to this, for the time being, we postpone the issue of

requiring lattices to be torsion-free.

Definition 2.2.1. We say that a lattice Γ < Gm ×Gn is irreducible if its projection

to each of Gm, Gn is dense and reducible otherwise.
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Remark 2.2.2. It is straightforward to construct reducible lattices by letting Γ =

Γ1 × Γ2, where Γ1 < Gm and Γ2 < Gn are lattices, and indeed all reducible lattices

have a finite index subgroup of this form [38, Ch. 5].

It is also well-known that irreducible lattices exist in Gm × Gn if and only if Gm

and Gn are isotypic, that is, if their complexifications are isogenous (see for instance

[36, Ch. 5F]). By a straightforward dimension argument, one sees that this is possible

if and only if m = n. Therefore when m ̸= n, necessarily any lattice Γ < Gm × Gn

is reducible. When m = n irreducible lattices are necessarily arithmetic by seminal

work of Margulis [31, Ch. IX], as Gm ×Gn is a higher rank Lie group.

Then we consider families of irreducible arithmetic lattices in Gm ×Gn whenever

m = n ≥ 2. In fact, as it requires minimal extra work, we will describe how to

construct infinitely many commensurability classes of arithmetic lattices in (Gm)
k

for any k ∈ N and therefore finite-volume orbifolds of the form (Hm × · · · × Hm)/Γ.

Throughout this subsection, fix a choice of k ∈ N.

Let K be a totally real number field with d = [K : Q] and denote by σi : K → R

the Galois embeddings of K for 1 ≤ i ≤ d. We will always require that d ≥ k in the

sequel. Let q be a K-quadratic form on the K-vector space Km+1, then we say that

the pair (q,K) is admissible if 1) K is the minimal field of definition of q and 2) the

forms qσ1 , . . . , qσk each have signature (n, 1) over R, and qσi is positive definite for

any i > k.

Given a field E and a quadratic form q on the vector space Em+1, let Bq denote

the matrix associated to q in the standard basis. Then the special orthogonal group

associated to (E, q) is given by

SOq(E) = {A ∈ SLm+1(E) | ATBqA = Bq}.
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Of particular importance is when (q,K) is an admissible pair, then Sylvester’s law of

inertia gives that

SOqσi (R) ∼=

{
SO(m, 1), 1 ≤ i ≤ k

SO(m+ 1), i > k
. (2.2.4)

In particular, we have the embedding

ψ : SOq(K) ↪→ SO(m, 1)× · · · × SO(m, 1)︸ ︷︷ ︸
k times

×
∏
i>k

SO(m+ 1),

g 7→ (σ1(g), . . . , σk(g), σk+1(g), . . . , σd(g))

where we abusively suppress the post-composition with the isomorphisms from Equa-

tion (2.2.4). If OK denotes the ring of integers of K and

Λ = SOq(OK) =
{
A ∈ SLm+1(OK) | ATBqA = Bq

}
,

then ψ(Λ) is discrete in SO(m, 1)k × SO(m + 1)d−k. Indeed, this follows from the

fact that OK is discrete in Rd via the similar map induced by the Galois embeddings.

An important theorem of Borel–Harish-Chandra [7] moreover shows that ψ(Λ) is a

lattice in this product.

Letting π denote the composition of ψ with the projection from this product to the

SO(m, 1)k factor, it follows that Γ = π(ψ(Λ)) ∩ (Gm)
k is a lattice in (Gm)

k. Indeed,

the kernel of π is the compact group
∏

i>k SO(m + 1). It is also straightforward to

check from the setup that the projection to each Gm factor of (Gm)
k is dense and

therefore Γ is an irreducible lattice in (Gm)
k.

Definition 2.2.3. We call any lattice in Isom+(Hm×· · ·×Hm) that is commensurable

with some Γ as constructed above an irreducible arithmetic lattice of simplest type.

Given such a lattice, we call the pair (q,K) used to construct Γ the arithmetic data

associated to the lattice.
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A couple of facts follow from this definition which we list as remarks.

Remark 2.2.4. Given two arithmetic lattices of simplest type Γ, Γ′ with associated

arithmetic datum (q,K), (q′, K ′) then Γ and Γ′ are commensurable if and only if

K ∼= K ′ and q and q′ are in the same K-similarity class. The latter means that q

is K-isometric to λq′ for some λ ∈ K∗. In particular, the number field K and the

K-similarity classes of q is a complete invariant of the commensurability class.

Remark 2.2.5. By Godement’s compactness criterion [36, Prop 5.26] an arithmetic

lattice of simplest type Γ with associated arithmetic data (q,K) is cocompact if and

only if q is anisotropic, that is, if there is no non-zero v ∈ Km+1 for which q(v) = 0.

Otherwise, we say that q is isotropic. These notions are commensurability invariants.

Moreover, the Hasse–Minkowski theorem shows that q is isotropic if and only if q

is isotropic over every completion of K. Therefore, whenever d > k the form q is

necessarily anisotropic since there is at least one completion associated to a Galois

embedding for which q is positive definite (and hence anisotropic).

Using the previous subsections, for each pair m,n ≥ 2, we now provide infinitely

many commensurability classes of manifolds to which Theorems 2.1.1 and 2.1.6 ap-

plies.

Theorem 2.2.6 (N.Miller). For every m,n ∈ N such that m,n ≥ 2, there exists

infinitely many commensurability classes of finite-volume manifolds with universal

cover isometric to Hm × Hn and containing an embedded compact totally geodesic

submanifold with universal cover isometric to Hm−1 ×Hn−1. Moreover, when m = n,

these manifolds may be taken to be either reducible or irreducible.
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2.3 Riemannian Metric for Product Lattices

In this section we first provide details for a construction that was quickly outlined

in the second and third paragraphs of Section 3 of [15]. We provide full details here

for two reasons. The first is because this construction is critical to our proof for

Theorem 2.1.1 (1). The second reason is to illustrate why this argument only works

for product lattices. We then prove Theorem 2.1.1 (1), using curvature formulas for a

warped product metric (Theorem 2.3.6) that will play a much larger role in Section ??.

2.3.1 Warped Product Metric on Product Lattices

Consider the manifold Rn ∼= Rn−1 × (−∞,∞). If we endow Rn−1 with the hy-

perbolic metric h̃n−1 and let xn denote the variable in the last coordinate, then it is

well-known (see for example [5]) that the hyperbolic metric h̃n on Rn can be written

as

h̃n = cosh2(xn)h̃n−1 + dx2n. (2.3.1)

Now, let σn : R → (0,∞) be a positive, real-valued function of xn. Replacing

cosh(xn) with σn(xn) in equation (2.3.1) yields the warped-product metric

g̃n = σ2
n(xn)h̃n−1 + dx2n. (2.3.2)

The components of the sectional curvature tensor of g̃n will, of course, be functions

of σn. Formulas for the sectional curvature tensor of g̃n are again well-known (see

for example [5, Eqns. 3.1, 3.2]). We list the relevant formulas after establishing an

appropriate frame. All calculations in the following paragraph are with respect to the

hyperbolic metric h̃n.
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Let φ : Rn → Rn−1 × {0} be the orthogonal projection. Let q ∈ Rn and p =

φ(q). Choose an orthonormal frame (X̌1, . . . , X̌n−1) about p for TpRn−1. Since φ :

Rn → Rn−1 is a submersion, dφ : TqRn → TpRn−1 is an epimorphism. Moreover,

letting H denote the orthogonal complement to ∂xn := ∂/∂xn in TqRn, we have that

dφ|H : H → TpRn−1 is an isomorphism. Letting Xi = dφ|−1
H (X̌i) ∈ H defines an

orthogonal frame (X1, . . . , Xn−1) for H about q. This frame is not orthonormal since

h̃n(Xi, Xi) = cosh2(xn) for each i. So the collection of vectors

Yi =
1

cosh(xn)
Xi for 1 ≤ i ≤ n− 1, Yn =

∂

∂xn
(2.3.3)

forms an orthonormal frame for TqRn about q with respect to the metric h̃n.

The corresponding orthonormal frame for g̃n is

Yi =
1

σn
Xi for 1 ≤ i ≤ n− 1, Yn =

∂

∂xn
. (2.3.4)

Let Kn(A,B) denote the sectional curvature of the 2-plane spanned by the vectors

A and B with respect to g̃n. Formulas for the sectional curvatures of g̃n with respect

to the frame in Equation (2.3.4) are

Kn(Yi, Yj) = − 1

σ2
n

−
(
σ′
n

σn

)2

for 1 ≤ i, j ≤ n− 1. (2.3.5)

Kn(Yi, Yn) = −σ
′′
n

σn
for 1 ≤ i ≤ n− 1. (2.3.6)

Additionally, there are no mixed terms. The frame in Equation (2.3.4) diagonalizes

the curvature operator with respect to g̃n.

Before stating Proposition 2.3.2, we state Lemma 2.3.1, a smoothing lemma that

we will use at several points throughout this paper including in the proof of Propo-

sition 2.3.2. Lemma 2.3.1 is intuitively clear, but the proof of a more general version

of this lemma can be found in [4, App. A].
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Lemma 2.3.1 (Smoothing Lemma). Let f1 : [a1, c] → R and f2 : [c, a2] → R be

smooth functions which satisfy f ′′
i > 0 for i = 1, 2, f1(c) = f2(c), and f

′
1(c) ≤ f ′

2(c).

If f : [a1, a2] → R denotes the concatenation of f1 and f2, then there exists δ > 0 and

a smooth function fδ : [a1, a2] → R such that f ′′
δ > 0 and both fδ = f and f ′

δ = f ′ at

the endpoints a1 and a2.

Proposition 2.3.2. Let η > 0. Then there exist ε1 and ε2 satisfying 0 < ε1, ε2 <

(1/2)η and a non-positively curved metric g on Rn−1 × [−η, η] which satisfies

g̃ = h̃n−1 + dx2n over Rn−1 × (−ε1, ε1),

g̃ = h̃n over Rn−1 × ([−η,−η + ε2) ∪ (η − ε2, η]) .

Remark 2.3.3. Proposition 2.3.2 is easily seen to be true for any ε1, ε2 which satisfy

the given inequality, however, in what follows we only need the weaker statement

above.

Proof. Let ε1 = ε2 = (1/8)η. Define the continuous, piecewise-smooth function σ̂n

over [0, η] by

σ̂n =


1, if 0 ≤ x ≤ 1

4
η

1 +
cosh( 3

4
η)−1

1
2
η

(
x− 1

4
η
)
, if 1

4
η ≤ x ≤ 3

4
η

cosh(x), if 3
4
η ≤ x ≤ η

The middle piece of this function is linear and interpolates between the values

1 and cosh(3
4
η) over the closed interval [(1/4)η, (3/4)η]. Note that, away from the

breakpoints (1/4)η and (3/4)η, this function is smooth and satisfies σ̂′′
n ≥ 0.
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One sees immediately that limx→(1/4)η− σ̂
′
n(x) = 0 < limx→(1/4)η+ σ̂

′
n(x). For the

other breakpoint, note that

lim
x→(3/4)η−

σ̂′
n(x) =

cosh
(
3
4
η
)
− 1

1
2
η

,

lim
x→(3/4)η+

σ̂′
n(x) = sinh

(
3

4
η

)
.

Using Taylor series it is an easy exercise to see that, again, limx→(3/4)η− σ̂
′
n(x) <

limx→(3/4)η+ σ̂
′
n(x). The smooth function σn is obtained by applying Lemma 2.3.1 to

σ̂n about both break points. By our above calculations we know that σ′′
n(x) ≥ 0 for

all x ∈ [0, η]. Finally, since 1 and cosh(x) are even functions, we can define σn in a

symmetric manner over [−η, 0].

Suppose Γ < Isom(Hm ×Hn) is a product lattice. So there exist Γm < Isom(Hm)

and Γn < Isom(Hn) such that Γ = Γm × Γn. Let Xm = Hm/Γm and Xn = Hn/Γn.

Then

M = (Hm ×Hn)/Γ = (Hm/Γm)× (Hn/Γn) = Xm ×Xn.

The universal cover of (each component of) our codimension two submanifold S

is isometric to Hm−1 × Hn−1. Thus, S naturally splits as a product Ym × Yn, where

Ym ⊂ Xm and Yn ⊂ Xn are both codimension one totally geodesic submanifolds. The

hyperbolic metrics h̃m and h̃n descend to metrics on Xm and Xn, of course. But by

Proposition 2.3.2 the manifolds Xi (i = m,n) admit nonpositively curved metrics gi

which, locally about Yi, are isometric to hi−1 × e1 (where ẽj denotes the Euclidean

metric on Rj). The metric g = gm × gn is thus a nonpositively curved metric on M

which, for some r > 0, is isometric to hm−1 × hn−1 × e2 on the interior of the r-tube

about S.
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Since (M, hm×hn) is assumed to have finite volume, each (Xi, hi) has finite volume.

But gi and hi agree on Xi outside of a compact set. Therefore (Xi, gi) has finite

volume, and thus (M, gm × gn) likewise has finite volume. We summarize all of the

above in the following Proposition.

Proposition 2.3.4. Let Γ < Isom(Hm × Hn) be a product lattice, let M = (Hm ×

Hn)/Γ, and let S ⊂ M be a totally geodesic, codimension two submanifold whose

universal cover is isometric to Hm−1 × Hn−1. Then there exists a metric g on M

which is nonpositively curved, has finite volume, and locally about S is isometric to

hm−1 × hn−1 × e2.

Remark 2.3.5. The construction above only works for product lattices. At the level of

the universal cover, the metric g̃i differs from h̃i on some strip about Hi−1 (i = m,n).

The product of these strips will contain points arbitrarily far from Hm−1 ×Hn−1. So,

if Γ does not split as a product of lattices, then there is no guarantee that the metric

g̃ = g̃m × g̃n will descend to a well-defined metric on M .

There are several easy arguments to prove Theorem 2.1.1 (1) using Proposition

2.3.4. But to prove Theorem 2.1.6 we will need the curvature formulas in Theorem

2.3.6 below. So we develop these formulas in this subsection, and then use them to

prove Theorem 2.1.1 in the next subsection.

Consider the product Rm × Rn ∼= Rm−1 × (−∞,∞) × Rn−1 × (−∞,∞). By

Equation (2.3.1), we have that the product hyperbolic metric can be written as

h̃m × h̃n = cosh2(xm)h̃m−1 + dx2m + cosh2(yn)h̃n−1 + dy2n.

If we define

xm = r cos(θ), yn = r sin(θ),
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for r ∈ [0,∞) and θ ∈ S1, then the product hyperbolic metric becomes

h̃m × h̃n = cosh2(r cos(θ))h̃m−1 + cosh2(r sin(θ))h̃n−1 + r2dθ2 + dr2. (2.3.7)

The associated warped-product metric is

λ̃ = α2(r, θ)h̃m−1 + β2(r, θ)h̃n−1 + f 2(r)dθ2 + dr2, (2.3.8)

where α and β are positive functions of r and θ and f is a positive function of r. In

Theorem 2.3.6 we work out formulas for the components of the sectional curvature

tensor of λ. These formulas will, of course, be functions of α, β, and f .

As in Section 2.3.2, we must first define an orthonormal frame for λ. For the

hyperbolic metrics in λ, we use the half-space model and write

hm−1 =
1

x2m−1

dx21 + · · ·+ 1

x2m−1

dx2m−1, (2.3.9)

hn−1 =
1

y2n−1

dy21 + · · ·+ 1

y2n−1

dy2n−1. (2.3.10)

Let X ′
i = ∂

∂xi
, for 1 ≤ i ≤ m − 1 and Y ′

j = ∂
∂yj

, for 1 ≤ j ≤ n − 1. Then

{X ′
1, . . . , X

′
m−1} and {Y ′

1 , . . . , Y
′
n−1} will be an orthogonal frame for the orthogonal

complement to {∂θ, ∂r} defined in an identical manner as in Subsection 2.3.2.1. We

define the orthonormal frame {X1, . . . , Xm−1, Y1, . . . , Yn−1, Zθ, Zr} by

Xi =
xm−1

α(r, θ)
X ′

i for 1 ≤ i ≤ m− 1, (2.3.11)

Yi =
yn−1

β(r, θ)
Y ′
i for 1 ≤ i ≤ n− 1, (2.3.12)

Zθ =
1

f(r)

∂

∂θ
, (2.3.13)

Zr =
∂

∂r
. (2.3.14)
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2.3.2 Sectional Curvature Formula

In what follows, for the functions α(r, θ) and β(r, θ), we will use the standard

notation

αr =
∂α

∂r
, αθ =

∂α

∂θ
,

and similarly for β and for second order partial derivatives. It is important to note

that subscripts only stand for partial derivatives when they are used with the functions

α and β.

Theorem 2.3.6. Let λ̃ = α2(r, θ)h̃m−1 + β2(r, θ)h̃n−1 + f 2(r)dθ2 + dr2 be the metric

on Rm−1 × Rn−1 × S1 × [0,∞) defined in Equation (2.3.8). Up to the symmetries of

the curvature tensor, the non-zero components of the curvature tensor are:

Kλ(Xi, Xj) = − 1

α2

(
1 + α2

r +
α2
θ

f 2

)
where i ̸= j, (2.3.15)

Kλ(Yi, Yj) = − 1

β2

(
1 + β2

r +
β2
θ

f 2

)
where i ̸= j, (2.3.16)

Kλ(Xi, Zθ) = − 1

αf

(
αrf

′ +
αθθ

f

)
, (2.3.17)

Kλ(Yi, Zθ) = − 1

βf

(
βrf

′ +
βθθ
f

)
, (2.3.18)

Kλ(Xi, Zr) = −αrr

α
, (2.3.19)

Kλ(Yi, Zr) = −βrr
β
, (2.3.20)

Kλ(Xi, Yj) = − 1

αβ

(
αrβr +

αθβθ
f 2

)
, (2.3.21)

Kλ(Zr, Zθ) = −f
′′

f
. (2.3.22)
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For non-zero mixed terms, we only have

< Rλ(Xi, Zr)Xi, Zθ >λ=
1

αf

(
αθf

′

f
− αrθ

)
, (2.3.23)

< Rλ(Yi, Zr)Yi, Zθ >λ=
1

βf

(
βθf

′

f
− βrθ

)
.

Proof. The authors calculated the above formulas using two different methods and

obtained the same results each way. We will describe both methods, and illustrate

their use by giving details for a few of the calculations. The first method will be

used to calculate one of the formulas in Equation (2.3.15), and the second method to

compute one of the formulas in Equation (2.3.23).

The first method is to calculate everything directly using local coordinates and

Christoffel symbols. Recall that, for a metric g and its coefficient matrix [gij], the

formulas for the curvature tensor with orthonormal frame {X1, . . . , Xn} are

< R(Xi, Xj)Xk, Xs >= Rijks =
∑
l

Rl
ijkgls, (2.3.24)

where

Rs
ijk =

∑
l

Γl
ikΓ

s
jl −

∑
l

Γl
jkΓ

s
il +

∂

∂xj
Γs
ik −

∂

∂xi
Γs
jk, (2.3.25)

and

Γm
ij =

1

2

∑
l

(
∂

∂xi
gjl +

∂

∂xj
gli +

∂

∂xl
gij

)
glm. (2.3.26)

Note that, in Equation (2.3.26), we are using the standard notation [gij] = [gij]
−1.

Now, for the metric λ̃ = α2(r, θ)h̃m−1 + β2(r, θ)h̃n−1 + f 2(r)dθ2 + dr2, and its

orthogonal frame {X ′
1, . . . , X

′
m−1, Y

′
1 , . . . , Y

′
n−1,

∂
∂r
, ∂
∂θ
}, the (m+ n)× (m+ n)-matrix
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of the coefficient functions for the metric λ is

[
λ̃ij

]
=



α2

x2
m−1

0 . . . 0

0
. . .

...
... α2

x2
m−1

β2

y2n−1

. . .
β2

y2n−1

f 2 0
0 0 1


(2.3.27)

In this computation, we label m + n indices not just from 1 to m + n, but label

x1, . . . , xm−1 for the first m− 1 indices, y1, . . . , yn−1 for the next n− 1 indices, r for

the (m + n − 1)th index, and θ for the last (m + n)th index. From the formula in

Equation (2.3.26), we have non-zero entries of the Christoffel symbols

Γxi
xixm−1

= − 1
xm−1

, Γxi
xir

= αr

α
, Γxi

xiθ
= αθ

α
, for 1 ≤ i ≤ m− 2.

Γxm−1
xixi

= 1
xm−1

, Γxm−1
xm−1r

= αr

α
, Γ

xm−1

xm−1θ
= αθ

α
, for 1 ≤ i ≤ m− 1.

Γyi
yiyn−1

= − 1
yn−1

, Γyi
yir

= βr

β
, Γyi

yiθ
= βθ

β
, for 1 ≤ i ≤ n− 2.

Γyn−1
yiyi

= 1
yn−1

, Γyn−1
yn−1r

= br
β
, Γ

yn−1

yn−1θ
= βθ

β
, for 1 ≤ i ≤ n− 1.

Γθ
xixi

= − ααθ

x2
m−1f

2 , Γθ
yiyi

= − ββθ

f2y2n−1
, Γθ

θr =
f ′

f
, for all i.

Γr
xixi

= − ααr

x2
m−1

, Γr
yiyi

= − ββr

y2n−1
, Γr

θθ = −ff ′, for all i.

and recall that the Christoffel symbols are symmetric i.e., Γi
jk = Γi

kj.

By applying the formulas in Equations (2.3.24) and (2.3.25), we obtain the com-

ponents for the (4, 0)-curvature tensor. Let us illustrate this process by explicitly

working out the computation for Kλ(Xi, Xj) where 1 ≤ i, j ≤ m− 1 and i ̸= j. The

other tensors can be computed similarly. First note that

Kλ(Xi, Xj) =< R(Xi, Xj)Xi, Xj >=
x4m−1

α4
Rxixjxixj

=
x4m−1

α4

∑
l

Rl
xixjxi

λlxj
.
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From the matrix in Equation (2.3.27) we have,

∑
l

Rl
xixjxi

λlxj
= Rxj

xixjxi

α2

x2m−1

.

We apply the formulas in Equations (2.3.25) and (2.3.26), and simplify as the

matrix Γxi has zero entries except Γxi
xixm−1

,Γxi
xir

, and Γxi
xiθ

up to symmetry.

Rxj
xixjxi

=
∑
l

Γl
xixi

Γ
xj

xj l
−
∑
l

Γl
xjxi

Γ
xj

xil
+

∂

∂xj
Γxj
xixi

− ∂

∂xi
Γxj
xjxi

= Γxm−1
xixi

Γxj
xjxm−1

+ Γr
xixi

Γxj
xjr

+ Γθ
xixi

Γ
xj

xjθ

=
1

xm−1

−1

xm−1

− ααr

x2m−1

αr

α
− ααθ

f 2x2m−1

αθ

α

= − 1

x2m−1

(
1 + α2

r +
α2
θ

f 2

)
.

Therefore we have

Kλ(Xi, Xj) =
x4m−1

α4
Rxj

xixjxi

α2

x2m−1

= − 1

α2

(
1 + α2

r +
α2
θ

f 2

)
.

The second (equivalent) method to calculate the formulas in Theorem 2.3.6 is to

calculate the Lie brackets for the orthonormal basis in Equations (2.3.11)–(2.3.14),

use these to calculate the Levi-Civita connection, and then use the connection to

calculate the components of the sectional curvature tensor.

The relevant Lie brackets needed for Equation (2.3.23) are

[Xi, Zθ] =
αθ

αf
Xi, [Xi, Zr] =

αr

α
Xi, [Zθ, Zr] = −f

′

f
Zθ.

Using the formula for an orthonormal basis

⟨∇AB,C⟩ = −1

2
(⟨[B,C], A⟩+ ⟨[A,C], B⟩+ ⟨[B,A], C⟩) ,
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one calculates

∇Xi
Xi = −αr

α
Zr −

αθ

αf
Zθ, ∇ZrXi = 0, ∇ZrZr = 0, ∇ZrZθ = 0.

Let us quickly note that no Lie brackets other than what are listed above contribute

to the above formulas for the connection.

Finally, we compute

⟨Rλ(Xi, Zr)Xi, Zθ⟩λ = ⟨∇Zr∇Xi
Xi −∇Xi

∇ZrXi +∇[Xi,Zr]Xi, Zθ⟩λ

= ⟨∇ ∂
∂r

(
−αr

α
Zr −

αθ

αf
Zθ

)
−∇Xi

(0) +
αr

α
∇Xi

Xi, Zθ⟩λ

= ⟨−αrrα + (αr)
2

α2
Zr −

αrθfα− αθ(f
′α + fαr)

α2f 2
Zθ +

αr

α

(
−αr

α
Zr −

αθ

αf
Zθ

)
, Zθ⟩λ

=
f ′

αf 2
αθ −

1

αf
αrθ =

1

αf

(
αθf

′

f
− αrθ

)
.

Lastly, note that the above calculation also gives the formula for Kλ(Xi, Zr).

Corollary 2.3.7. Using the notation of Theorem 2.3.6, when α = β = 1 the only

nonzero components of the curvature tensor for λ̃ are

Kλ(Xi, Xj) = −1, Kλ(Yi, Yj) = −1, Kλ(Zr, Zθ) = −f
′′

f
.

2.3.3 Proof of Theorem 2.1.1

To prove Theorem 2.1.1 (1), we need to warp the product hyperbolic metric near

S in order to turn S into a cusp of N . We do this by defining functions α and β on

S1 × (−∞, ε) and f on (−∞, ε) in Equation (2.3.8) for some sufficiently small ε > 0.

As the radial parameter r approaches −∞, this has the geometric effect of turning S

into a cusp of N .
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Remark 2.3.8. By Fubini’s Theorem, and since S1 is compact, a sufficient condition

for the metric λ̃ in Equation (2.3.8) to descend to a metric on N = M \ S with

finite-volume is that all three functions α, β, and f are bounded for r ∈ (−∞, ε), and

at least one of the functions approaches 0 exponentially as r → −∞.

Definition 2.3.9. A Riemannian metric g with curvature tensor R is A-regular if

there exists a sequence of positive numbers {Ak} such that, for each k ≥ 0, the kth

covariant derivative of R satisfies |∇kR|C0 < Ak.

Note that when k = 0, this implies that the sectional curvature of g is bounded.

Obviously, any metric on a compact manifold is A-regular, and the hyperbolic metric

is known to be A-regular. Therefore, in our setting, we just need to show that our

constructed metric is A-regular on the region about S where we turn S into a cusp.

Proof of Theorem 2.1.1 (1). We want to construct a smooth metric on Rm−1×Rn−1×

S1 × (−∞,∞) which will descend to a well-defined metric on N . We use Corollary

2.3.7 and Proposition 2.3.4, together with a change in coordinates.

Let η > 0 be the normal injectivity radius of S in M and η′ = (1/2)η. By

Proposition 2.3.4 there exists a finite volume, nonpositively curved metric g2 on N

which is isometric to hm−1 × hn−1 × e2 on the η′ neighborhood of S. This metric lifts

to a metric g̃2 with the same properties on Rm+n−2 × S1 × (0,∞).

We now define a metric g̃1 on Rm−1×Rn−1×S1× (−∞, ϵ1) where ϵ1 =
1
2
η′. From

Equation (2.3.8), by putting α = 1 and β = 1, we have a metric

λ̃ = h̃m−1 + h̃n−1 + f 2(r)dθ2 + dr2. (2.3.28)
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We want to construct a function f(r) such that f, f ′′ > 0, and f → 0 exponentially

as r → −∞. Let ϵ2 = 1
2
ϵ1. Then there exists c < min{1, ϵ2} and an ϵ > 0 so that

ϵec = c. Let 1
2
c = ϵ3 and define two functions f1(r) and f2(r) by

f1(r) = ϵer, r ∈ [ϵ3, c], (2.3.29)

f2(r) = r, r ∈ [c, ϵ2]. (2.3.30)

Notice that f1(c) = ϵec = c = f2(c) and f
′
1(c) = ϵec = c ≤ 1 = f ′

2(c). Therefore,

by Lemma 2.3.1, there exists a smooth function f on [ϵ3, ϵ2] such that f ′′ > 0, f1(ϵ3) =

f(ϵ3), and f2(ϵ2) = f(ϵ2).

We thus have a smooth metric g̃1 defined on Rm−1 × Rn−1 × S1 × (−∞, ϵ1) given

by

g̃1 =


h̃m−1 + h̃n−1 + (ϵer)2dθ2 + dr2, r ∈ (−∞, ϵ3]

h̃m−1 + h̃n−1 + f 2(r)dθ2 + dr2, r ∈ [ε3, ε2]

h̃m−1 + h̃n−1 + r2dθ2 + dr2, r ∈ [ϵ2, ϵ1]

. (2.3.31)

By Corollary 2.3.7, the sectional curvature of g̃1 is nonpositive. Note that, on

Rm+n−2 × S1 × [ε2, ε1], g̃1 = h̃m−1 + h̃n−1 + e2. Thus, g̃1 = g̃2 on this region. We

can therefore glue these metrics together to obtain a nonpositively curved metric g̃

defined on the whole of Rm+n−2 × S1 × (−∞,∞). Since this metric agrees with g̃1

outside of the normal injectivity radius of S̃, it descends to a well-defined metric g

on N .

Since α = β = 1 and f = εer on (−∞, 0), by Remark 2.3.8 the metric g has

finite-volume. For A-regularity, consider the metric g near the cusp. By Corollary

2.3.7 there are only three nonzero terms of the curvature tensor, all identically equal

to −1. Therefore all of its derivatives are zero and hence bounded. Thus the metric

g is A-regular.
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2.4 Riemannian Metrics for The General Lattices

2.4.1 Riemannian Metrics on Cusped Spaces

Let E = Hm−1×Hn−1×S1, and consider the metric λ̃ from equation (2.3.8) defined

on E× (0,∞). Let q ∈ E× (0,∞), let σ ⊂ Tq(E× (0,∞)) be a 2-plane, and consider

the orthonormal frame about q given by equations (2.3.11) through (2.3.14). Choose

an orthonormal basis (A,B) for σ which satisfies that A is orthogonal to Zr, which

is always possible since the orthogonal complement to Zr has codimension one.

Choose a unit vector X1 in the Hm−1 component of Tq(E × (0,∞)) and a unit

vector Y1 in the Hn−1 component of Tq(E×(0,∞)) which satisfy that X1 is parallel to

projHm−1(A) and Y1 is parallel to projHn−1(A). Finally, choose corresponding vectors

X2 and Y2 such that projHm−1(σ) ⊆ span(X1, X2) and projHn−1(σ) ⊆ span(Y1, Y2).

Then there exist constants a1, a3, a5, b1, b2, . . . , b6 such that

A = a1X1 + a3Y1 + a5Zθ and B = b1X1 + b2X2 + b3Y1 + b4Y2 + b5Zθ + b6Zr.

Note that, since A and B are orthonormal, we have

a21 + a23 + a25 = 1 b21 + . . .+ b26 = 1 a1b1 + a3b3 + a5b5 = 0.

In the sequel we use the following notation. Let

Ω1 = X1 Ω2 = X2 Ω3 = Y1 Ω4 = Y2 Ω5 = Zθ Ω6 = Zr

and

Rijkℓ = ⟨R(Ωi,Ωj)Ωk,Ωℓ⟩λ.
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We then compute

Kλ(σ) = ⟨R(A,B)A,B⟩λ = a21b
2
2R1212 + (a1b3 − a3b1)

2R1313 + a21b
2
4R1414

+ a23b
2
2R2323 + a25b

2
2R2525 + a23b

2
4R3434 + a25b

2
4R4545 + a25b

2
6R5656

+ (a1b5 − a5b1)
2R1515 + 2a1b6(a1b5 − a5b1)R1516 + a21b

2
6R1616 (2.4.1)

+ (a3b5 − a5b3)
2R3535 + 2a3b6(a3b5 − a5b3)R3536 + a23b

2
6R3636 (2.4.2)

Lines (2.4.1) and (2.4.2) can be rewritten as

[
a1b5 − a5b1 a1b6

] [R1515 R1516

R1516 R1616

] [
a1b5 − a5b1

a1b6

]
(2.4.3)

and [
a3b5 − a5b3 a3b6

] [R3535 R3536

R3536 R3636

] [
a3b5 − a5b3

a3b6

]
. (2.4.4)

With these calculations we are ready to prove the following proposition, which

gives a relatively simple criterion to determine exactly when λ̃ is nonpositively curved.

Proposition 2.4.1. The metric λ̃ in (2.3.8) is nonpositively curved if and only if

both of the following two conditions hold:

1. All of the curvatures in equations (2.3.15) through (2.3.22) are nonpositive.

2. All matrices of the form[
Kλ(Xi, Zθ) < Rλ(Xi, Zr)Xi, Zθ >λ

< Rλ(Xi, Zr)Xi, Zθ >λ Kλ(Xi, Zr)

]
(2.4.5)

and [
Kλ(Yi, Zθ) < Rλ(Yi, Zr)Yi, Zθ >λ

< Rλ(Yi, Zr)Yi, Zθ >λ Kλ(Yi, Zr)

]
(2.4.6)

are negative semi-definite.
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Proof. First, notice that the matrices in (2.4.5) and (2.4.6) are of the exact same form

as the matrices in equations (2.4.3) and (2.4.4).

To prove the proposition, we first assume that conditions (1) and (2) hold. Then,

by (2), lines (2.4.1) and (2.4.2) in the calculation for ⟨R(A,B)A,B⟩λ are nonpositive.

By (1), the first two lines are also nonpositive. Therefore, the metric λ̃ must have

nonpositive sectional curvature.

So let us now assume that all sectional curvatures of λ̃ are nonpositive. This

clearly implies statement (1). To verify statement (2), we consider specific 2-planes σ

which correspond to choosing specific coefficients a1, a3, a5, b1, b2, . . . b6. In particular,

we begin by specifying that

a3 = a5 = b2 = b3 = b4 = 0.

The only nonzero line in the calculation of ⟨R(A,B)A,B⟩λ with this choice of coeffi-

cients is (2.4.1). Note that a3 = a5 = 0 forces a1 = ±1. The vector[
a1b5
a1b6

]
= ±

[
b5
b6

]
can obtain any direction in RP1 for different choices of b5 and b6. So the only way to

ensure that (2.4.1) is nonpositive for all possible selections of these variables is if the

matrix [
R1515 R1516

R1516 R1616

]
is negative semi-definite. An identical analysis shows that we also need the matrix[

R3535 R3536

R3536 R3636

]
to be negative semi-definite, verifying the necessity of condition (2).
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Remark 2.4.2. Condition (1) in Proposition 2.4.1 forces the matrices in (2.4.5) and

(2.4.6) to each have at least one nonpositive eigenvalue. If one of Kλ(Xi, Zθ) or

Kλ(Xi, Zr) are negative (as opposed to nonpositive), then the matrices of the form

(2.4.5) must have at least one negative eigenvalue (and similarly for Kλ(Yi, Zθ),

Kλ(Yi, Zr), and (2.4.6)). In this case, matrices of the form (2.4.5) are negative semi-

definite if and only if their determinant is nonnegative. So, if Kλ(Xi, Zθ) < 0 or

Kλ(Xi, Zr) < 0, and condition (1) in Proposition 2.4.1 holds, then λ̃ is nonpositively

curved if and only the matrices in (2.4.5) and (2.4.6) have nonnegative determinant.

The proof of Proposition 2.4.1 combined with Remark 2.4.2 gives the following

Corollary.

Corollary 2.4.3. Let ε > 0, and suppose that either Kλ(Xi, Zθ) or Kλ(Xi, Zr) are

bounded above by a negative constant that is independent of ε. Also, assume that

condition (1) in Proposition 2.4.1 is satisfied. Then there exists ζ(ε) > 0 such that, if

all matrices of the form (2.4.5) and (2.4.6) have determinant greater than −ζ, then

the sectional curvature of λ̃ is less than ε.

We are now ready to prove Theorem 2.1.6 (1).

Proof of Theorem 2.1.6 (1). We again let E = Hm−1 × Hn−1 × S1, and let ε > 0

be given. Let δ denote the normal injectivity radius of S in M . We first define a

piecewise-smooth metric g̃′ by prescribing specific values for the functions α, β, and

f in equation (2.3.8) on different portions of E × R. We will show that, for a set

of parameters all chosen sufficiently small, the sectional curvatures of g̃′ at all points

where it is smooth are bounded above by ε/2. We will then argue that we can C2-

approximate g̃′ by a smooth metric g̃ whose sectional curvatures are as close to those

69



of g̃′ as we like. The metric g̃ will agree with h̃m × h̃n outside of a sufficiently small

tubular neighborhood of Hm−1 × Hn−1, and so will thus descend to a well-defined

metric g on N . An easy argument will show that we can choose all parameters

sufficiently small so that vol(N, g) < vol(M, hm × hn) + ξ for any prescribed ξ > 0.

The metric g̃′ will depend on a set of small positive parameters η, η1, η2, and η3.

The value of η1 will be the value of r at which the functions f1(r) = ηer and f2(r) = r

intersect (which is at approximately r = η). For now, we will assume that all other

parameters are given positive numbers that satisfy η1 < η2 < η3 < δ. At the end of

the proof we will discuss the order in which we choose these parameters. Also note

that, for r > 0 small, we have the approximations

cosh(r cos θ) ≈ 1 +
1

2
r2 cos2 θ

cosh(r sin θ) ≈ 1 +
1

2
r2 sin2 θ.

Since all of our calculations below occur for r ≈ 0, and the condition Kλ < ε is an

open condition, we will use these approximations for the remainder of the proof to

simplify calculations.

We define the metric g̃′ via (2.3.8) by

1. f = ηer and α = β = 1 on E × (−∞, η1).

2. f = r and α = β = 1 on E × (η1, η2).

3. On E × (η2, η3) we define f = r and

α(r, θ) = 1 +
η23

2(η3 − η2)2
(r − η2)

2 cos2 θ

β(r, θ) = 1 +
η23

2(η3 − η2)2
(r − η2)

2 sin2 θ
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4. On E × (η3,∞) we have f(r) = r and

α(r, θ) = 1 +
1

2
r2 cos2 θ

β(r, θ) = 1 +
1

2
r2 sin2 θ.

We quickly note that the metric g̃′ is not only piecewise-smooth, but it is also C0 and

is C1 at E × {η2}.

It is a straightforward calculation using Proposition 2.4.1 to show that g̃′ has

nonpositive curvature over E×(−∞, η1) and E×(η1, η2). Of course, g̃′ is the product

hyperbolic metric on E× (η3,∞) and thus has nonpositive curvature over this region.

Our real task is to show that, for η2 chosen sufficiently small2, Kg′ < ε on E×(η2, η3).

Of the sectional curvatures in equations (2.3.15) through (2.3.22), it is clear that

all of these are nonpositive except for Kg′(Xi, Zθ) and Kg′(Yi, Zθ). For Kg′(Xi, Zθ),

we have

Kg′(Xi, Zθ) = − 1

fα

(
f ′αr +

αθθ

f 2

)
= − 1

rα

(
η23

(η3 − η2)2
(r − η2) cos

2 θ +
η23

r(η3 − η2)2
(r − η2)

2(sin2 θ − cos2 θ)

)
=

−η23
rα(η3 − η2)2

(r − η2)

[(
1− r − η2

r

)
cos2 θ +

r − η2
r

sin2 θ

]
=

−η23
r2α(η3 − η2)2

(r − η2)
[
η2 cos

2 θ + (r − η2) sin
2 θ
]

which is clearly nonpositive for all values of θ. The calculation for Kg′(Yi, Zθ) is

identical.

We now move our attention to the matrix in (2.4.5), again with the calculations

for (2.4.6) being identical. We first need the intermediate calculations

Kg′(Xi, Zr) = −αrr

α
=

−η23
(η3 − η2)2α

cos2 θ

2The calculation turns out to not depend on the size of η3.
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and

⟨R(Xi, Zr)Xi, Zθ⟩ =
1

fα

(
f ′αθ

f
− αrθ

)
=

1

rα

[
−η23

r(η3 − η2)2
(r − η2)

2 sin θ cos θ +
2η23

(η3 − η2)2
(r − η2) sin θ cos θ

]
=

η23
rα(η3 − η2)2

(r − η2)
(
1 +

η2
r

)
sin θ cos θ.

Letting

Q =

[
Kλ(Xi, Zθ) < Rλ(Xi, Zr)Xi, Zθ >λ

< Rλ(Xi, Zr)Xi, Zθ >λ Kλ(Xi, Zr)

]
we have

Det(Q) =
η43(r − η2)

r2α2(η3 − η2)4
cos2 θ

(
η2 cos

2 θ + (r − η2) sin
2 θ
)

− η43(r − η2)
2

r2α2(η3 − η2)4

(
1 +

η2
r

)2
sin2 θ cos2 θ

=
η43(r − η2)

r2α2(η3 − η2)4
cos2 θ

[
η2 cos

2 θ + (r − η2)

(
1−

(
1 +

η2
r

)2)
sin2 θ

]
. (2.4.7)

First note that Det(Q) = 0 when r = η2. Also, when sin θ = 0 it is clear that (2.4.7) is

nonnegative. The reason why g̃′ does not have nonpositive curvature over E× (η2, η3)

is because the coefficient of sin2 θ in (2.4.7) will generally be negative. But notice

that, as η2 approaches 0, Det(Q) approaches 0 for all values of r and θ. So, for any

prescribed value of ζ, we can choose η2 sufficiently small so that Det(Q) > −ζ for all

values of r ∈ (η2, η3) and θ ∈ S1.

Also notice that, as η2 approaches 0, we have

Kg′(Xi, Zθ) → − sin2 θ and Kg′(Xi, Zr) → − cos2 θ.

Thus, at least one of these values is always nonzero. An identical analysis applies

for the matrix in equation (2.4.6). Therefore, by Corollary 2.4.3, we can choose η2

sufficiently small so that Kg′ is bounded above by ε/2 over E × (η2, η3).
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We can use Lemma 2.3.1 to smooth g̃′ near E×{η1} in such a way that our smooth

metric g̃ will have nonpositive curvature in this region. At E × {η2} the function g̃′

is C1, and the only obstruction to being C2 is αrr. One sees immediately from the

definition of g̃′ that

lim
r→η−2

αrr = 0

lim
r→η+2

αrr =
η23

(η3 − η2)2
cos2 θ.

We can now apply Lemma 2.3.1 to αrr in a small neighborhood of η2 (and keeping θ

fixed), and integrate to obtain an appropriate smoothing of α.

To analyze E × {η3}, let

α1(r, θ) = 1 +
η23

2(η3 − η2)2
(r − η2)

2 cos2 θ

and

α2(r, θ) = 1 +
1

2
r2 cos2 θ.

Notice that, as η2 → 0, α1 smoothly approaches α2. So, for η2 chosen sufficiently

small, we can find µ < (1/4)(η2 − η1) and a function α : S1 × [η2 − µ, η2 + µ] → R

such that

• α = α1 on a small neighborhood of S1 × {η2 − µ}.

• α = α2 on a small neighborhood of S1 × {η2 + µ}.

• |α2 − α|C2 < ε′ for any prescribed ε′ > 0.

Hence, we can smooth g̃′ to obtain a smooth metric g̃ which satisfies Kg < ε.

Let us quickly discuss is how we choose our parameters. We begin by choosing η3

less than δ. We then choose η2 sufficiently small so that Kg′ < ε/2 on E × (η2, η3) as
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discussed above, and so that curvatures change by at most ε/4 when smoothing g̃′ to

obtain g̃ near E×{η3}. Finally, we choose η sufficiently small so that η1 < (1/2)η2. We

still need to smooth g′ in small intervals about η1 and η2. We perform all smoothing

in intervals which are less than 1/4 of the distance to the next closest parameter. In

this way there will be no overlap on the intervals where we smooth g̃′. Finally, we

decrease the values for η2 and η, if necessary, to satisfy the volume conditions below.

The last thing that we need to consider is the volume of (N, g). Suppose the

submanifold S has k components, and let S ′ be one of those components. Since

α = β = 1 for r in (−∞, 0), by Fubini’s Theorem we have that the volume of this

portion of the cusp corresponding to S ′ is

2πvol(S ′)

∫ 0

−∞
ηer dr = 2πηvol(S ′).

We can choose η > 0 sufficiently small so that this quantity is less than ξ/(2k) for any

prescribed ξ > 0. Also, the functions α, β, and f are bounded, independent of the

parameters, on (0, η3). So by a direct inequality we can bound the volume of N over

this region by ξ/(2k) by choosing η3 sufficiently small. Thus, the metric g has volume

at most ξ/k within the η3-neighborhood of S ′ (measured with respect to hm × hn),

and therefore vol(N, g) < vol(M, hm × hm) + ξ.

2.4.2 Riemannian Metrics on Branched Coverings

To prove Theorem 2.1.6 (2), we need the following result from [15].

Theorem 2.4.4 ([15] Section 2). Let (M, gM) be a nonpositively curved manifold,

(S, gS) a totally geodesic, codimension two submanifold of M , and suppose that, on

some r-tube about S, we have that gM = gS + e2. Let Xd denote the d-fold cyclic
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branched cover of M about S, and ϕd : Xd → M the associated ramified covering

map. Then, given any δ1, δ2 > 0 with 0 < δ1 < δ2 < r, there exists a smooth,

nonpositively curved metric g on Xd such that

1. g = gM = gS + e2 on the δ1 neighborhood of S, and

2. g = ϕ∗
dgM outside of the δ2 neighborhood of S. In particular, on the (δ2, r)-

annulus of S, we have g = gS + ϕ∗
d(e2).

Note that, in Theorem 2.4.4, we abuse notation and also use S to refer to the

ramification locus of Xd.

Remark 2.4.5. Theorem 2.4.4 is essential in Fornari and Schroeder’s proof of Theorem

2.1.1 (2) in [15]. But note that, by Remark 2.3.5, Proposition 2.3.2 can only be used

to construct a metric on Hm×Hn which will descend to M and satisfies gM = gS + e2

whenever Γ splits as a product. This is why the argument in [15] only applies to

product lattices.

We can now use Theorem 2.4.4 and a very similar argument as in the proof of

Theorem 2.1.6 (1) to prove Theorem 2.1.6 (2).

Proof of Theorem 2.1.6 (2). Let E = Rm−1×Rn−1×S1, let ε > 0 be given, and let δ

denote the normal injectivity radius of S inM (which is equal to the normal injectivity

radius of S in Xd). Let X̃d be the universal cover of Xd, which is diffeomorphic to

Rm+n ∼= E× [0,∞), and let ϕ : X̃d → Xd denote the associated covering map. Define

ϕd as in Theorem 2.4.4, and let φd = ϕd ◦ ϕ.

Choose δ1 and δ2 with 0 < δ1 < δ2 < (1/2)δ, and consider the metric h̃m−1 +

h̃n−1 + ẽ2 on X̃d. This metric satisfies the “local product” assumption in Theorem

2.4.4. So there exists a smooth, nonpositively curved metric g̃1 on X̃d which satisfies
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• g̃1 = h̃m−1 + h̃n−1 + ẽ2 on E × [0, δ1).

• g̃1 = h̃m−1 + h̃n−1 + d2ẽ2 on E × (δ2,∞).

Take S1 and subdivide it into d equidistant subintervals A1, . . . , Ad. The metric

g̃1 restricted to the manifold Rm−1×Rn−1×Ai× (δ2,∞) is equal to hm−1+hn−1+ e2.

In what follows we restrict our calculations to Yi = Rm−1 ×Rn−1 ×Ai × (δ2,∞), and

we perform the same procedures on Yi for each i so that our metrics glue together to

give a well-defined metric on X̃d.

Choose η2, η3 > 0 such that δ2 < η2 < η3 < δ. We use equation (2.3.8) to define a

metric g̃′2 on Yi as follows:

1. f = r and α = β = 1 on E × (δ2, η2).

2. On E × (η2, η3) we define f = r and

α(r, θ) = 1 +
η23

2(η3 − η2)2
(r − η2)

2 cos2 θ

β(r, θ) = 1 +
η23

2(η3 − η2)2
(r − η2)

2 sin2 θ

3. On E × (η3,∞) we have f(r) = r and

α(r, θ) = 1 +
1

2
r2 cos2 θ

β(r, θ) = 1 +
1

2
r2 sin2 θ.

The definition of g̃′2 above is identical to the last three steps in the definition of g̃′ in

the proof of Theorem 2.1.6 (1). Via this same argument, we can smooth g̃′2 to obtain

a metric g̃2 on Yi with all curvatures less than ε. This metric g̃2 descends to a metric

g2 on the complement of the δ2 neighborhood of S in M .
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There exists µ > 0 such that, for each i, the metrics g̃1 and g̃2 agree on Rm−1 ×

Rn−1 × Ai × (δ2, δ2 + µ). We then define the metric g̃ on X̃d by

g̃ =

{
g̃1 on E × [0, δ2]

φ∗
d(g2) on E × [δ2,∞)

. (2.4.8)

Via the discussion above, g̃ is well-defined on the overlap of these regions and thus

defines a smooth metric on X̃d whose curvatures are bounded above by ε. Since this

metric agrees with φ∗
d(hm + hn) outside of the δ-neighborhood of S, it descends to a

well-defined metric on Xd. An identical argument to the proof of Theorem 2.1.6 (1)

shows that, by choosing δ2 sufficiently small, we can bound the volume of (Xd, g) by

d · vol(M, hm × hn) + ξ for any ξ > 0.

2.5 Future Works: Topology of (M,S)

The group π1(N) will not be relatively hyperbolic relative to the fundamental

groups of its ends. Therefore we cannot directly conclude many standard rigidity

results for π1(N), for instance those obtained in [5], [4], and [6]. But when Γ splits

as a product, Theorem 2.1.1 allows us to conclude statements about the topological

rigidity of π1(N). In particular, by combining Theorem 2.1.1 with results from Farrell–

Jones [12] and Lafforgue [29], we conclude the following.

Corollary 2.5.1. Suppose (M,S) is as in Theorem 2.1.1. If N̄ is a compact as-

pherical manifold with π1(N̄) ∼= π1(N), then N̄ satisfies Borel’s conjecture provided

dim(N̄) ≥ 5. Moreover, if π1(N) satisfies Lafforgue’s Rapid Decay property, then it

satisfies the Baum-Connes conjecture.

As an immediate consequence of Corollary 2.1.4, we have that N virtually satisfies

the conclusions of Corollary 2.5.1 when Γ is reducible. Using “graph of groups” style

arguments, we can prove the following results about π1(N).

77



Bibliography

[1] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley Series in
Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken,
NJ, fourth edition, 2016.
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